
Information and Software Technology 126 (2020) 106332

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Recommending refactorings via commit message analysis

Soumaya Rebai a , Marouane Kessentini a , ∗ , Vahid Alizadeh

a , Oussama Ben Sghaier a ,
Rick Kazman

b

a University of Michigan, Dearborn, MI, USA
b University of Hawaii, USA

a r t i c l e i n f o

Keywords:

Commit message
Refactoring recommendation
Quality attributes

a b s t r a c t

Context: The purpose of software restructuring, or refactoring, is to improve software quality and developer
productivity.

Objective: Prior studies have relied mainly on static and dynamic analysis of code to detect and recommend
refactoring opportunities, such as code smells. Once identified, these smells are fixed by applying refactorings
which then improve a set of quality metrics. While this approach has value and has shown promising results,
many detected refactoring opportunities may not be related to a developer’s current context and intention. Re-
cent studies have shown that while developers document their refactoring intentions, they may miss relevant
refactorings aligned with their rationale.

Method: In this paper, we first identify refactoring opportunities by analyzing developer commit messages and
check the quality improvements in the changed files, then we distill this knowledge into usable context-driven
refactoring recommendations to complement static and dynamic analysis of code.

Results: The evaluation of our approach, based on six open source projects, shows that we outperform prior
studies that apply refactorings based on static and dynamic analysis of code alone.

Conclusion: This study provides compelling evidence of the value of using the information contained in existing
commit messages to recommend future refactorings.

1

w

s

f

[

t

[

t

q

b

a

b

m

o

a

i

k

t

a

i

a

c

r

r

t

o

i

h

f

h

H

c

a

t

w

h
R
A
0

. Introduction

Software restructuring or refactoring [1] is critical to improve soft-
are quality and developer’s productivity, but it can be complex, expen-

ive, and risky. As projects evolve, developers in a rush to deliver new
eatures frequently postpone necessary refactorings until a crisis occurs
2] . By that time it often results in degraded performance, an inability
o support new features, or even a failed system and significant losses
3–5] . Thus, several studies have been proposed to (semi-) automate
he recommendation of refactorings to help developers improving the
uality of their systems in a more timely fashion [6–15] .

While code-level refactoring is widely studied and well supported
y tools [14,16–19] , it remains a human activity which is hard to fully
utomate and requires developer insights. Such insights are important
ecause developers understand their problem domain intuitively and
ay have a clear target end-state in mind for their system. A majority

f existing tools and approaches rely on the use of quality metrics such
s coupling, cohesion, and the QMOOD quality attributes [20] to first
dentify refactoring opportunities, and then to recommend refactorings
∗ Corresponding author.
E-mail addresses: srebal@umich.edu (S. Rebai), marouane@umich.edu (M. Kessen

azman@hawaii.edu (R. Kazman).

ttps://doi.org/10.1016/j.infsof.2020.106332
eceived 1 December 2019; Received in revised form 26 April 2020; Accepted 27 Ap
vailable online 15 May 2020
950-5849/© 2020 Elsevier B.V. All rights reserved.
o fix them. Many of the quality issues detected using structural metrics
re known as code smells or antipatterns [21] . However, recent stud-
es have shown that developers are not primarily interested in fixing
ntipatterns when they are performing refactoring [9] .

In a recent survey of Alizadeh et al. [18,22] with several software
ompanies, 84% of interviewees confirmed that most of the automated
efactoring tools recommend hundreds of code-level quality issues and
efactorings, but these tools fail to adequately explain how these refac-
orings are relevant to a developer who is combining refactorings with
ther tasks such as fixing bugs and enhancing features. This observation
s consistent with other studies [23–25] showing that refactorings rarely
appen in isolation. Without a rigorous understanding of the rationale
or refactoring, recommendation tools may continue to suffer from a
igh false-positive rate and limited relevance to developers [26–28] .
owever, if a refactoring rationale can be automatically identified, this
an guide refactoring recommendations to be more relevant and less
d hoc. Recent empirical studies show that while developers document
heir refactoring intention, they may miss relevant refactorings aligned
ith their rationale [25,26] . One of the main reasons is that manual
tini), alizadeh@umich.edu (V. Alizadeh), oussama@umich.edu (O.B. Sghaier),

ril 2020

https://doi.org/10.1016/j.infsof.2020.106332
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2020.106332&domain=pdf
mailto:srebal@umich.edu
mailto:marouane@umich.edu
mailto:alizadeh@umich.edu
mailto:oussama@umich.edu
mailto:kazman@hawaii.edu
https://doi.org/10.1016/j.infsof.2020.106332

S. Rebai, M. Kessentini and V. Alizadeh et al. Information and Software Technology 126 (2020) 106332

r

t

b

s

a

i

t

T

t

s

d

m

t

T

t

p

r

t

[

t

c

t

m

t

b

i

t

m

e

v

n

b

o

i

e

i

(

i

r

r

m

T

d

f

b

r

s

t

c

a

t

t

l

i

o

v

a

b

t

b

l

S

s

a

d

F

i

2

2

2

u

a

h

Q

i

[

s

(

a

m

2

“

t

b

I

i

t

w

c

efactoring is a tedious and time-consuming task which also explains
he tendency of the developers to perform the minimum possible num-
er of refactorings [18,29] . Thus, it is critical to provide developers a
emi-automated refactorings support that can understand their rationale
nd translate it into actionable refactorings recommendation.

In this paper, we start from the observation that a majority of
nconsistencies between documented and applied refactorings were due
o poor refactoring decisions taken manually by developers [25,26] .
herefore, we think that there is a need for linking documentation
o refactoring recommendations as well as a need for an automated
ystem that can not only check the consistency of the developer-created
escriptions of refactoring but also recommend further refactoring to
eet their rationale. However, none of the existing studies have used

his knowledge to guide the process of refactoring recommendation.
hus, we propose a novel approach, called RefCom , to capitalize on
his previously unused resource.

RefCom includes the following steps. First, we filtered a large cor-
us of commit messages to extract the ones containing quality issues or
efactorings based on a list of 87 keywords which are already defined in
he literature [29–31] . We also used an existing tool, RefactoringMiner
32] , to detect the refactorings applied in commits to confirm or ex-
end the ones detected using our set of keywords. Second, we automati-
ally identified the changed files in these selected commits and detected
he impacted code fragments. Third, we checked the quality improve-
ents in these files to detect the quality attributes that developers aimed

o improve. Finally, we recommended more refactorings to developers
ased on the rationale extracted from the commits: the locations of the
ntended refactorings and the quality attributes to be improved. Fur-
hermore, our tool will generate warnings to developers if their commit
essages are not matching the manually applied refactorings.

Our ultimate goal is to recommend a set of refactoring solutions that
nhance the improvements described in the commit messages or pro-
ide developers better ways to refactor their code based on the ratio-
ale found in the commits. RefCom identifies potential inconsistencies
etween developer intentions and actual applied refactorings and rec-
mmends an additional set of refactorings that better meet developer
ntentions and expectations. In fact, the paper validated the first hypoth-
sis that commit messages document refactorings applied by developers
ncluding their intention by answering the following research question:

RQ1 : To what extent are refactorings documented in commit messages?

The second hypothesis validated in this paper is the inconsistencies
or incomplete refactorings) between documented and applied refactor-
ngs in terms of expected impact/intention via answering the following
esearch question:

RQ2 : To what extent do developers accurately document their refactoring

and its rationale?

These observed inconsistencies/gaps (RQ2) along with the fact that
efactoring documentation is available at the commit level (RQ1) are the
ain motivations to refine existing refactoring recommendation tools.
hus, we selected our previous multi-objective refactoring recommen-
ation tool [33] as a case study for this purpose while answering our
ollowing third research question:

RQ3 : To what extent can our approach recommend relevant refactor-

ings based on commit analysis compared to existing refactoring tech-

niques?

However, it is possible to expand the outcomes of RQ1 and RQ2 to
uild better refactoring recommendation tools in general. To summa-
ize, our contributions are not limited to recommending refactorings
olutions using a straightforward multi-objective technique. We believe
hat RQ1 and RQ2 can advance the knowledge within the refactoring
ommunity. For the first two contributions RefCom uses NLP and static
nd dynamic analysis to detect developers’ intentions, the actual refac-
orings and the quality attributes improvement. For the third contribu-
ion, we used a multi-objective algorithm to recommend refactoring so-
utions to enhance the applied refactorings (after extracting developer’s
ntention) or fix the detected inconsistencies. We validated our approach
n six open source projects containing a large number of commits. Our
alidation shows that RefCom outperforms both the actual refactorings
pplied by developers in their commits and existing refactoring tools
ased on antipatterns and static and dynamic analysis [33,34] . Thus,
he use of the knowledge extracted from commit messages is critical to
etter understand developer preferences.

The primary contributions of this paper can be summarized as fol-
ows:

1. The paper introduces, for the first time, an approach, RefCom , based
on commit messages to recommend refactorings. Thus, the recom-
mendations are based on understanding the developers’ intention to
refactor the code from the commit messages rather than fixing an-
tipatterns and improving the majority of quality metrics.

2. The proposed technique can either: (a) enhance some of the previ-
ously refactored files in the commits by providing better alternatives
after extracting the refactoring rationale; or (b) recommend refactor-
ings to address the quality issues mentioned in the commit messages
when we did not find an actual improvement when checked the files
before and after the commit.

3. The paper reports the results of an empirical study on the imple-
mentation of our approach. The obtained manual evaluation results
provide evidence to support the claim that our proposal is more ef-
ficient, on average, than existing refactoring techniques based on
a benchmark of 6 open source systems in terms of the relevance
of recommended refactorings especially for the case of incremental
refactorings.

The remainder of this paper is structured as follows.
ection 2 presents the relevant background details. Section 3 de-
cribes our approach while the results obtained from our experiments
re presented and discussed in Section 4 . Threats to validity are
iscussed in Section 5 . Section 6 provides an account of related work.
inally, in Section 7 , we summarize our conclusions and present some
deas for future work.

. Problem statement

.1. Background

.1.1. Quality attributes
QMOOD is a widely used quality model, based on the ISO 9126 prod-

ct quality model [35] . We selected this model because it is a widely
ccepted quality model in industry and it has been validated based on
undreds of industrial projects [18,35–38] . Each quality attribute in
MOOD is defined using a combination of low-level metrics as detailed

n Tables 1 and 2 . The QMOOD model has been used in many studies
20,39,40] to estimate the effects of proposed refactoring solutions on
oftware quality. QMOOD defines six high-level design quality attributes
reusability, flexibility, understandability, functionality, extendibility,
nd effectiveness) that can be calculated using 11 lower-level design
etrics.

.1.2. Commits and refactoring
Refactoring documentation has two major parts: pull requests for

high-level ” refactorings [41] and commit messages for code-level refac-
orings. The individual commit messages describe refactorings applied
y a developer. A refactoring process typically starts with a new branch.
n this branch, each commit should correspond to a code-level refactor-
ng. After developers commit all the code-level refactorings (i.e., finish
he refactoring process), developers make a pull request in which they
rite a description of the overall refactoring. If the refactorings are ac-

epted, the branch is merged into the master branch.

S. Rebai, M. Kessentini and V. Alizadeh et al. Information and Software Technology 126 (2020) 106332

Table 1

QMOOD metrics description.

Design Metric Design property Description

Design Size in Classes (DSC) Design Size Total number of classes in the design.

Number Of Hierarchies (NOH) Hierarchies Total number of “root ” classes in the design (count(MaxInheritenceTree

(class) = 0))

Average Number of Ancestors (ANA) Abstraction Average number of classes in the inheritance tree for each class.

Direct Access Metric (DAM) Encapsulation Ratio of the number of private and protected attributes to the total number of

attributes in a class.

Direct Class Coupling (DCC) Coupling Number of other classes a class relates to, either through a shared attribute or a

parameter in a method.

Cohesion Among Methods of class (CAMC) Cohesion Measure of how related methods are in a class in terms of used parameters. It

can also be computed by: 1 – LackOfCohesionOfMethods()

Measure Of Aggregation (MOA) Composition Count of number of attributes whose type is user defined class(es).

Measure of Functional Abstraction (MFA) Inheritance Ratio of the number of inherited methods per the total number of methods

within a class.

Number of Polymorphic Methods (NOP) Polymorphism Any method that can be used by a class and its descendants. Counts of the

number of methods in a class excluding private, static and final ones.

Class Interface Size (CIS) Messaging Number of public methods in class.

Number of Methods (NOM) Complexity Number of methods declared in a class.

Table 2

Quality attributes and their equations.

Quality attributes Definition computation

Reusability A design with low coupling and high cohesion is easily reused by other designs.

0 . 25 ∗ 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 + 0 . 25 ∗ 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 + 0 . 5 ∗ 𝑀𝑒𝑠𝑠𝑎𝑔𝑖𝑛𝑔 + 0 . 5 ∗ 𝐷𝑒𝑠𝑖𝑔𝑛𝑆𝑖𝑧𝑒
Flexibility The degree of allowance of changes in the design.

0 . 25 ∗ 𝐸𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 0 . 25 ∗ 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 + 0 . 5 ∗ 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 0 . 5 ∗ 𝑃𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚
Understandability The degree of understanding and the easiness of learning the design implementation details.

0 . 33 ∗ 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 0 . 33 ∗ 𝐸𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 0 . 33 ∗ 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 + 0 . 33 ∗ 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 − 0 . 33 ∗ 𝑃𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 − 0 . 33 ∗ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 − 0 . 33 ∗ 𝐷𝑒𝑠𝑖𝑔𝑛𝑆𝑖𝑧𝑒
Functionality Classes with given functions that are publicly stated in interfaces to be used by others.

0 . 12 ∗ 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 + 0 . 22 ∗ 𝑃𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 + 0 . 22 ∗ 𝑀𝑒𝑠𝑠𝑎𝑔𝑖𝑛𝑔 + 0 . 22 ∗ 𝐷𝑒𝑠𝑖𝑔𝑛𝑆𝑖𝑧𝑒 + 0 . 22 ∗ 𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑒𝑠
Extendibility Measurement of a design’s ability to incorporate new functional requirements.

0 . 5 ∗ 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 − 0 . 5 ∗ 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 + 0 . 5 ∗ 𝐼𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒 + 0 . 5 ∗ 𝑃𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚
Effectiveness Design efficiency in fulfilling the required functionality.

0 . 2 ∗ 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 0 . 2 ∗ 𝐸𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 0 . 2 ∗ 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 0 . 2 ∗ 𝐼𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒 + 0 . 2 ∗ 𝑃𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚

p

F

F

m

t

i

2

a

a

G
Fig. 1 shows an example of a commit extracted from an open source
roject. The refactorings applied by the developers are summarized in
ig. 2 , and the changes in the coupling (DCC) metric can be seen in
ig. 3 . Of course, refactoring rarely happen in isolation and most of com-
its and pull-requests contain a sequence of refactorings as described in

he example Fig. 2 that shows a sequence of three refactorings applied

n one commit. t

d

Fig. 1. An example commit f
.2. Motivation

The primary motivation for our work emerged from our interactions,
s part of an NSF I-Corps project, with 127 professional developers
t 38 medium and large-size companies including eBay, Amazon,
oogle, IBM, and others. The main goal of that study was to identify

he challenges associated with current refactoring tools. These are
iscussed next.
rom the “btm ” project.

S. Rebai, M. Kessentini and V. Alizadeh et al. Information and Software Technology 126 (2020) 106332

Fig. 2. The list of refactorings applied in the commit.

Fig. 3. The quality metric changes in the commit.

2

r

i

h

t

r

m

t

fi

[

fi

W

c

w

2

c

o

t

r

o

d

q

b

f

u

t

i

t

p

t

h

o

2

m

d

W

p

t

d

w

t

t

u
.2.1. Understanding the refactoring rationale is a key for relevant

ecommendations

Developers lack knowledge of why they should apply the refactor-
ngs recommended by existing tools and are frequently overwhelmed by
undreds of automatically generated antipatterns to fix and quality at-
ributes to improve without any indication of their impact on their cur-
ent context [19,33,42,43] . While existing refactoring approaches are
ainly based on static and dynamic analyses to find refactoring oppor-

unities [34,44] , developers may not have the time and motivation to
x every quality issue. For instance, several developers we interviewed
18,22,45] mentioned that they are reluctant to apply refactorings on
les that they do not “own ” or that are not related to their current tasks.
ithout understanding and detecting developer intentions when they

hoose to refactor their code, refactoring recommendation techniques
ill continue to be underutilized [46] .

.2.2. Developers describe and document refactoring opportunities in

ommit messages

While several empirical studies [47,48] have shown that over 62%
f code reviews discuss maintainability issues to be addressed by refac-
oring, and only 23% are focused on bug-fixing, most existing work still
elies primarily on static and dynamic analyses to identify refactoring
pportunities and to explain the need for them. During our survey of in-
ustrial partners (for three projects) we found that an average of 38% of
uality issues discussed in code reviews and commit messages could not

e detected using existing traditional static and dynamic analysis tools
or code smell detection. As described in Figs. 1–3 , the developer doc-
mented their refactoring rationale in terms of improving the coupling
hat was detected both in the metrics change and the detected refactor-
ngs in that commit. Thus, a recommendation refactoring tool can use
his information of both the quality attribute to improve and the im-
roved code location (files) to find more refactorings that may fit with
he current intention of the developer. But none of the existing studies
ave used commit message analysis to detect refactoring opportunities
r to infer recommendations.

.2.3. Developers may not manually find the best refactoring strategy

eeting their needs

Developers need documentation to comprehend refactoring and un-
erstand quality changes for code reviews, and to assess technical debt.
e found that 46% of the commits in JHotDraw, Xerces, and three

rojects of one of our industrial partners, eBay, were related to refac-
oring, as detected using RefactoringMiner [32] . However, 39% of the
ocumentation of their pull-request descriptions or commit messages
as inconsistent with the actual quality changes observed in the sys-

ems after refactoring. We found that a majority of the inconsistencies in
hese projects was attributable to poor refactoring decisions taken man-
ally by developers rather than to wrong documentation. Thus we need

S. Rebai, M. Kessentini and V. Alizadeh et al. Information and Software Technology 126 (2020) 106332

Fig. 4. Approach Overview: RefCom.

t

a

c

t

3

m

i

v

b

t

t

3

p

w

F

r

i

t

l

w

i

a

l

o

q

m

o

t

t

q

R

m

t

p

w

c

b

c

i

u

a

o

fi

a

o

k

o

b

t

t

m

c

t

i

a

v

m

t

c

t

t

m

b

q

3

d

T

a

c

i

a

c

i

t

m

a

t

t

r

t

a

a

h

3

t
o link documentation with refactoring recommendations and we need
n automated system that can check the consistency of the developer-
reated descriptions of refactorings and which can also recommend fur-
her refactorings for quality changes.

. RefCom: commit-based refactoring recommendations

Fig. 4 gives an overview of our RefCom approach consisting of three
ain components: the extraction of refactoring-related commits, the

dentification of refactoring rationale from commits (where and why de-
elopers applied refactorings) and the recommendation of refactorings
ased on the extracted rationale from the commits to address the iden-
ified quality issues and meet the developer’s intention. We describe, in
he following, these three main components.

.1. Refactoring related commit extraction

The first step of our approach is to filter the set of commits of a
roject by keeping only those related to refactorings. This filtering step
ill help constructing a set of commits that are related to refactoring.
irst, we created a set of 87 keywords via combining different predefined
efactoring related keywords from previous work [29,30,49] . Thus, the
nput for the keyword extraction step is the set of commits along with
he list of keywords and the output is a filtered set of refactoring re-
ated commits. The full list of considered keywords can be found in the
ebsite appendix [50] . Second, we used the latest version of Refactor-

ngMiner [32] , which supports 38 types of refactoring, to identify the
ctual refactorings applied between commits by the developers. We se-
ected RefactoringMiner based on the high precision and recall score of
ver 90%, as reported in their study. Third, we calculated the QMOOD
uality attributes of each commit to check whether there were improve-
ents in the quality between commits (which would suggest that a set

f refactorings had taken place). Qmood improvement evaluation step
akes as an input a set of commits and outputs a filtered set of commits
hat contain observed actual improvements in at least one of the qmood
uality attributes.

The refactoring related commits are the union of the results of the
efactoringMiner detection, keywords extraction and QMOOD improve-
ent evaluation. We decided to unify the data from these sources for

he following reasons: (1) RefactoringMiner can help to identify the ap-
lied refactorings even if they did not improve quality metrics or they
ere not documented, (2) the keywords extraction can help to detect

ommits related to refactorings even there were no refactorings detected
y RefactoringMiner or no observed quality improvements (inconsisten-
ies detection), and (3) the QMOOD improvements can help not only in
dentifying commits related to refactoring even if they were not doc-
mented in the commits but also in understanding the impact of the
pplied refactorings. Additionally, we determined that the combination
f the keywords, quality changes, and RefactoringMiner is sufficient to
lter the commits since we have also manually inspected some of them
s well. In fact, we selected the commits that are identified by only one
f the three strategies (RefactoringMinder, QMOOD improvements or
eywords). We considered commits that are confirmed by at least two
ut of these three strategies as having already a very high probability to
e related to refactorings. Thus, we inspected manually all the commits
hat are only detected with exclusively one of the three strategies. The
otal number of commits in that category are around 23% (319 com-
its).

RefactoringMiner can detect non-documented refactorings in the
ommit messages, and the use of the keywords is useful to identify
he claims and intentions of developers which may not be translated
nto actual refactorings. The automated check of quality changes can
lso help to identify refactoring-related commits and check if the de-
elopers actually addressed the quality issues described in the commit
essages. To summarize, the documented refactorings are in general

he ones that are described in the commit messages and eventually
ould be detected using the keywords. Furthermore, we are able to de-
ect the refactorings related commits using both RefactoringMinder and
he QMOOD improvements. In fact, these refactorings related commits
ay not be described in the commits message but they are detected

ecause they contained identified refactorings or they improved the
uality.

.2. Identifying refactoring rationale from commits

Identifying refactoring rationale has two parts. The first part is the
etection of the files that are refactored by developers in a commit.
he second part is the identification of changes in the QMOOD quality
ttributes then comparing these changes with the information in the
ommit message.

For the first part, we used the GitHub API to identify the changed files
n each commit. In the second part, we compared the QMOOD quality
ttribute values before and after the commit to capture the actual quality
hanges for each file. Once the changed files and quality attributes were
dentified, we checked if the developers intended to actually improve
hese files and quality attributes. In fact, we preprocessed the commit
essages and we used the names of code elements in the changed files

nd the changed quality metrics as keywords to match with words in
he commit message. Once the refactoring rationale is automatically de-
ected using this procedure, we continue with the next step to find better
efactoring recommendations that can fully meet the developer’s inten-
ions and expectations. In case that no quality changes were identified
t all then a warning will be generated to developers that the manually
pplied refactorings are not addressing the quality issues described in
is commit message.

.3. Refactoring recommendations

After the identification of the refactoring rationale from the his-
ory of commits as described in the previous step, we adopted an ex-

S. Rebai, M. Kessentini and V. Alizadeh et al. Information and Software Technology 126 (2020) 106332

Table 3

An example of a solution: sequence of refactorings recommended by RefCom.

Operation Source/entity Target entity

Move Method ctrl.booking.BookingController::handleLodgingViewEvent (java.awt.event.ActionEvent):void ctrl.booking.LodgingModel

Extract Class ctrl.booking.SelectionModel:: -flightList + addFlight():void+clearFlight():void ctrl.booking.FlightList

Move Method ctrl.booking.BookingController::createBookings():void ctrl.CoreModel

i

v

q

a

c

a

a

c

o

Q

a

r

a

t

t

e

a

o

P

e

s

i

u

a

C

r

d
b

t

M

S

w

f

q

s

o

p

o

t

o

r

p

t

f

c

t

r

s

a

i

t

a

Algorithm 1 Commit-based multi-objective refactoring.

1: Input
2: Sys : system to evaluate, Pt: parent population, Files : detected files

from the commits analysis, Quality Attributes : detected quality at-
tributes to improve from the commits analysis

3: Output
4: 𝑃 𝑡 +1
5: Begin

6: /* Test if any user interaction occurred in the previous iteration */
7: 𝑆 𝑡 ← ∅, 𝑖 ← 1;
8: 𝑄 𝑡 ← 𝑉 𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (𝑃 𝑡);
9: 𝑅 𝑡 ← 𝑃 𝑡 ∪𝑄 𝑡 ;

10: 𝑃 𝑡 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑃 𝑡 , 𝐶 𝑡 , 𝑆𝑦𝑠);
11: (𝐹 1 , 𝐹 2 , …) ← 𝑁𝑜𝑛𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑆𝑜𝑟𝑡 (𝑅 𝑡);
12: repeat

13: 𝑆 𝑡 ← 𝑆 𝑡 ∪ 𝐹 𝑖 ;
14: 𝑖 ← 𝑖 + 1
15: until (|𝑆 𝑡 | ≥ 𝑁)
16: 𝐹 𝑙 ← 𝐹 𝑖 ; ⊳ //Last front to be included
17: if |𝑆 𝑡 | = 𝑁 then

18: 𝑃 𝑡 +1 ← 𝑆 𝑡 ;
19: else

20: 𝑃 𝑡 +1 ← ∪𝑙−1
𝑗=1 𝐹 𝑗 ;

21: /*Number of points to be chosen from 𝐹 𝑙 */
22: 𝐾 ← 𝑁 − |𝑃 𝑡 +1 |;
23: /*Crowding distance of points in Fl */
24: 𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔 − 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 (𝐹 𝑙);
25: 𝑄𝑢𝑖𝑐𝑘 − 𝑆𝑜𝑟𝑡 (𝐹 𝑙);
26: /*Choose 𝐾 solutions with largest distance*/
27: 𝑃 𝑡 +1 ← 𝑃 𝑡 +1 ∪ 𝑆𝑒𝑙𝑒𝑐𝑡 (𝐹 𝑙 , 𝑘);
28: end if

29: if 𝐶𝑜𝑚𝑚𝑖𝑡𝑠𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 ← 𝑇 𝑅𝑈𝐸 then

30:

31: /* Select and rank the best front */
32: 𝐹 𝑖𝑙𝑡𝑒𝑟 − 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝐹 1 , 𝐹 𝑖𝑙𝑒𝑠, 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝐴 𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠);
33: 𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑 − 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝐶𝑜𝑚𝑚𝑖𝑡)
34: end if

35: End

T

h

3

a

w

p

a

o

m

r

d

r

t
sting multi-objective algorithm for refactoring [33] to search for rele-
ant refactoring solutions improving both the detected files and changed
uality attributes. A refactoring solution, as shown in Table 3 , consists of
 sequence of n refactoring operations involving one or multiple source
ode elements of the system to refactor. For every refactoring, pre-
nd post-conditions are specified to ensure the feasibility of the oper-
tion [51] . We selected multi-objective algorithm adaptation due to the
onflicting quality attributes that are considered in this study. In fact,
ur adaptation of multi-objective algorithm takes as objectives the 6
MOOD quality attributes. Furthermore, multi-objective search has the
dvantage of generating a diverse set of solutions, thus we can filter the
ecommendations automatically based on the preferred files and quality
ttributes of the developer (extracted from the commits as described in
he previous step) without the need to run the refactoring recommenda-
ion algorithm multiple times. For instance, if the refactoring rationale
xtracted from commits focused on improving both understandability
nd reusability in specific Class A and Class B, we execute our multi-
bjective algorithm using all the 6 quality attributes then we filter the
areto front based on the two main criteria that are contained in the
xtracted refactoring rationale. First, we make sure that the selected
olution is the one that provides the highest improvement in the qual-
ty attributes extracted from the commits during our analysis step (e.g.
nderstandability and reusability). Second, the optimal solution should
lso refactor the detected changed files in the commits (e.g. Class A,
lass B.

For more details about the multi-objective refactoring algorithm, the
eader can refer to [33] .

The adopted multi-objective refactoring tool is based on the non-
ominated sorting genetic algorithm (NSGA-II) [52] to find a trade-off
etween the six QMOOD quality attributes. A multi-objective optimiza-
ion problem can be formulated as follow :

inimize 𝐹 (𝑥) = (𝑓 1 (𝑥) , 𝑓 2 (𝑥) , … , 𝑓 𝑀

(𝑥)) ,

ubject to 𝑥 ∈ 𝑆,

𝑆 = { 𝑥 ∈ 𝑅

𝑚 ∶ ℎ (𝑥) = 0 , 𝑔(𝑥) ≥ 0};

here S is the set of inequality and equality constraints and the functions
 i are objective or fitness functions. In multi-objective optimization, the
uality of a solution is recognized by dominance. The set of feasible
olutions that are not dominated by any other solution is called Pareto-

ptimal or Non-dominated solution set.
NSGA-II is a multi-objective evolutionary algorithm operating on a

opulation of candidate solutions which are evolved toward the Pareto-
ptimal solution set. As described in Algorithm 1 , the first iteration of
he process begins with the complete execution of NSGA-II adapted to
ur refactoring recommendation problem based on the fitness functions
epresenting each of the quality attributes. In the beginning, a random
opulation of encoded refactoring solutions, P 0 , is generated as the ini-
ial parent population. Then, the children population, Q 0 , is created
rom the initial population using crossover and mutation. Parent and
hildren populations are combined to form R 0 . Finally, a subset of solu-
ions is selected from R 0 based on the crowding distance and domination
ules. This selection is based on elitism which means keeping the best
olutions from the parent and child population. Elitism does not allow
n already discovered non-dominated solution to be removed. After the
dentification of the non-dominated refactoring solutions, we apply a fil-
er on them consisting of the detected changed files from the commit(s)
nd the desired quality attributes, also extracted from the commit(s).
hese identified refactorings are assigned to each of the commits that
ave been modified by the developers.

.4. Running example

To demonstrate a practical example of our proposed approach, we
nalyzed a real-world software repository on GitHub. For this purpose,
e executed our tool on a repository called “Inception_D ”. This project
rovides a semantic annotation platform offering intelligent annotation
ssistance and knowledge management. It is a large project including
ver 5000 commits.

As a first step of our approach, we analyzed and filtered the com-
its of the mentioned repository and we extracted the refactoring-

elated commits. Fig. 5 represents the commit where the developer(s)
ocumented the changes as “ Refactor PredictionTask.java for increased

eusability ”. It is clear from the developer’s documentation that his inten-
ion was to improve the reusability of that class. This information helped

S. Rebai, M. Kessentini and V. Alizadeh et al. Information and Software Technology 126 (2020) 106332

Fig. 5. The analyzed commit message from “In-
ception_D ”.

Fig. 6. The manual refactoring applied by
the developer in the commit.

i

t

c

t

b

i

s

t

g

t

e

p
n identifying the refactoring rationale. Our refactoring recommenda-
ion component takes as an input the modified classes which is, in this
ommit, “PredictionTask.java ” and “Reusability ” as a quality attribute
o improve. Fig. 7 shows the list of refactorings that were recommended
y our tool to enhance/extend the developer’s list of applied refactor-
ng as shown in Fig. 6 . Three out of the four recommended refactoring
olutions contained the specific modified file as a parameter. To show
he usefulness and the impact of our recommended solutions, RefCom
enerates charts for comparaison between the before developer’s changes,

he after developer’s changes and the after RefCom refactorings values of
ach QMOOD quality attributes. Fig. 8 highlights that RefCom clearly
rovided much better alternatives than the actual manual refactorings

S. Rebai, M. Kessentini and V. Alizadeh et al. Information and Software Technology 126 (2020) 106332

Fig. 7. The List of refactorings recom-
mended by RefCom.

Fig. 8. QMOOD quality before and after the commits com-
paring the manual refactorings and RefCom.

a

n

t

4

4

r

a

s

s

fi

c

i

a

t

m

[

4

s

f

J

g

p

m

a

t

o

r

n

r

c

i

a

[

m

m

a

d

r

m

a

i

m

o

i

t
pplied by the developer. For instance, the reusability attribute was sig-
ificantly improved —almost 15 times more than the improvement in-
roduced by the developer’s changes.

. Evaluation

.1. Research questions

To validate our proposed approach, we defined the following three
esearch questions:

• RQ1. To what extent are refactorings documented in commit mes-
sages?

• RQ2. To what extent do developers accurately document their refac-
toring and its rationale?

• RQ3. To what extent can our approach recommend relevant refac-
torings based on commit analysis compared to existing refactoring
techniques?

While the first research question will validate our first hypothesis
bout developers document their refactoring rationale in commit mes-
ages, the second research question will validate the second hypothe-
is that developers spend the minimum of manual refactorings effort to
x the identified quality issues, thus there are inconsistencies (or in-
omplete refactorings) between documented and applied refactorings
n terms of expected impact/intention. The third question will evalu-
te the relevance of the recommended refactorings after integrating the
wo above insights into our refactoring tool to make actionable recom-
endations. A demo of our refactoring tool, Refcom, can be found in

50] .
Table 4

Summary of the evaluated systems.

N Project name LOC Number of classes Total commits

1 atomix 182,280 1459 4237

2 btm 34,232 187 975

3 jgrapht 158,665 526 2902

4 JSAT 182,267 436 1561

5 pac4j 31,916 302 2282

6 tablesaw 52,837 224 1930
.2. Experimental setting

To address the research questions, we analyzed the six open source
ystems in Table 4 . Atomix is a fault-tolerant distributed coordination
ramework. Btm is a distributed and complete implementation of the
TA 1.1 API. Jgrapht is a graph library that provides mathematical
raph-theory objects and algorithms. JSAT is a set of algorithms for
re-processing, classification, regression, and clustering with support for
ulti-threaded execution. Pac4j is a security engine. Tablesaw includes
 data-frame, an embedded column store, and hundreds of methods to
ransform, summarize, or filter data. We selected these projects because
f their size, number of commits, and applied refactorings.

To answer RQ1, we computed the ratio of the number of refactoring
elated commits to the total number of commits. Then, we counted the
umber of documented refactorings among these identified refactoring
elated commits. Documented refactorings are the commit messages that
ontain documentation about refactoring. These documented refactor-
ngs are detected using keywords. However, refactoring related commits
re the commits found after the union of the results of RefactoringMiner
32] detection, keywords extraction (same list of keywords previously
entioned) and the observed quality attribute changes between com-
its detected using our dedicated parser. A commit can be considered

s a “refactoring related commit ”, while it does not contain refactoring
ocumentation (in the commit message) because it may contain either
efactorings detected by RefactoringMiner or included quality improve-
ents (when comparing before/after refactoring). In addition to evalu-

te the number of refactoring related commits and documented refactor-
ngs, we have also evaluated the main quality attributes that are docu-
ented in refactoring related commits to understand the most important

nes that developers document. The detection of the documented qual-
ty attributes is carried out by searching for quality attributes names and
heir roots in the commit messages. Finally, we investigated the number
 Refactoring related commits Total number of refactorings

343 12,909

150 522

204 2202

236 1457

127 3130

327 3143

S. Rebai, M. Kessentini and V. Alizadeh et al. Information and Software Technology 126 (2020) 106332

o

b

t

t

i

r

w

a

p

a

t

w

u

a

q

fi

w

r

m

R

c

o

m

r

o

i

t

J

l

i

t

w

d

g

e

o

T

t

s

o

p

a

i

p

t

W

e

s

v

p

Table 5

Participants involved to answer RQ3.

System #Partic. Avg. Prog. Avg. Java Avg. Refact.
Experience Experience Exp. (1–5)

atomix 4 9 9 4.0 (high)

btm 4 8 7 3.5 (medium)

jgrapht 4 10 9 3.8 (medium)

JSAT 4 9 7 3.5 (high)

pac4j 4 7.5 7 4.5 (very high)

tablesaw 4 9 9 3.5 (high)

b

t

T

q

t

t

p

a

r

f

t

e

c

t

t

d

t

m

s

t

a

A

t

o

o

m

t

t

w

a

4

4

c

i

t

s
f commits that introduce significant changes in the quality attributes,
ut which developers did not document.

To answer RQ2, we checked all the quality attributes by analyzing
he code, and not only the ones claimed/documented by developers in
heir commits. There are two main reasons for checking all the qual-
ty attributes improvement. First, it helped identifying the refactoring
elated commits that contain documented quality attributes but there
ere no actual observed improvement of the quality attributes before
nd after the commit. Second, checking all the quality attributes im-
rovement helps detecting the commit that does not claim a quality
ttribute but still is related to refactoring. In fact, we have used Refac-
oringMiner [32] and our tool for code analysis to detect the situations
here quality attributes changes and applied refactorings were not doc-
mented. These are opportunities for refactoring solutions that better
ddress these quality attributes.

To answer RQ3, we used the outcomes of the two prior research
uestions to identify developer refactoring rationale per commit: what
les did they want to refactor? And what quality attributes did they
ant to improve? Then, we used that rationale to guide and filter the

efactoring recommendations generated using our approach based on
ulti-objective search. We compared the automated refactorings using
efCom to the manual refactorings applied by the developers in the
ommits in terms of quality improvements. Then, we compared the rec-
mmended refactorings to two existing studies [33,34] using a relevance
easure. The relevance of the refactorings is defined as the number of

efactoring recommendations accepted by developers participating in
ur experiments divided by the total number of recommended refactor-
ngs.

We asked 24 developers to evaluate the meaningfulness of the refac-
orings recommended by Refcom and by the approach of Ouni [33] and
Deodorant [34] for pull-requests on the six subject systems. We fol-
owed a random order of the three tools when the results were manually
nspected. All the experimental techniques generate sequences of refac-
oring operations that make sense when considered together rather than
hen looking at them in isolation. However, it is not an option to ask a
eveloper to assess the meaningfulness of all the refactoring operations
enerated for a given system. For this reason, we started by filtering for
ach system the sequences of refactoring operations impacting the files
f a set of pull-requests to make a fair comparison between both tools.
hen, the developers manually evaluated the outcomes of both tools for
he commits of each pull-request.

Each participant was then asked to assess the meaningfulness of the
equences of refactoring operations. We made sure that each participant
nly evaluated refactoring sequences recommended by the three com-
etitive techniques on one system. The rationale for such a choice is that
n external developer would need time to acquire system knowledge by
nspecting its code, and we did not want participants to have to com-
rehend the code from multiple systems since this would introduce a
raining effect in our study.

To support such a complex experimental design, we built a Java
eb-app that automatically assigns the refactored pull-requests to be

valuated to the developers. The Web-app showed each participant one
equence of refactoring operations on a single page, providing the de-
eloper with (i) the list of refactorings (move method m i to class C j , then
ush down field f k to subclass C j ,), (ii) the code of the classes impacted
Table 6

An overview of the documented commits related to refactoring o

Project Total number
of commits

Commits related
to refactoring

Docuented comm
related to refacto

atomix 4237 343 211

btm 975 150 52

jgraphft 2902 204 107

jsat 1561 236 113

pac4j 2282 127 84

tablesaw 1930 327 159
y the sequence of refactorings, and (iii) the complete code of the sys-
em subject of the refactoring with the generated refactoring sequence.
he web page showing the refactoring sequence asked participants the
uestion Would you apply the proposed refactorings? with a choice be-
ween no (the refactoring sequence is not meaningful), or yes (the refac-
oring sequence is meaningful and should be implemented). Moreover,
articipants were optionally allowed to leave a comment justifying their
ssessment. The Web-app was also in charge of:

Balancing the evaluations per system. We made sure that each system
eceived roughly the same number of participants evaluating the dif-
erent refactored pull-requests/commits (files associated/modified by
hese pull-requests) by the three approaches.

Keeping track of the time spent by participants in the evaluation of

ach refactoring sequence/pull-request. The time spent by participants was
ounted in seconds since the moment the Web-app showed the refac-
oring on the screen to the moment in which the participant submitted
heir assessment. This feature was done to remove participants from our
ata set who did not spend a reasonable amount of time in evaluating
he refactorings. We consider less than 90 s a reasonable threshold to re-
ove noise (we removed all evaluation sessions in which the participant

pent less than 90 seconds in analyzing a single refactoring sequence).
Collecting demographic information about the participants. We asked

heir programming experience (in years) overall and in Java, and a self-
ssessment of their refactoring experience (from very low to very high).
ll of the participants were hired based on our current and previous ex-

ensive industry collaborations on refactoring. Despite that we contacted
pen source developers, we did not receive from them a timely response
r did not answer at all which is a common challenge and threat in hu-
an studies within software engineering research [53] . We made sure

hat all the selected participants from industry are experienced in refac-
oring and used before these open source systems/libraries.

Table 5 shows the participants involved in our study and how they
ere distributed in the evaluation of the refactoring sequences gener-
ted for the six systems.

.3. Results

.3.1. Results for RQ1

Since our work is based on the assumption that developers write
ommit messages to document some of the applied refactorings, we
dentified first the commits related to refactorings then we checked
hose that documented the applied refactorings in the commit messages.

Table 6 summarizes our findings. It is clear that all the six open
ource projects have extensive refactorings applied in previous commits:
n the six open source systems.

its
ring

Commits identified with
RefacotoringMiner

Commits identified with
quality improvements

233 174

55 46

87 40

58 65

65 33

116 63

S. Rebai, M. Kessentini and V. Alizadeh et al. Information and Software Technology 126 (2020) 106332

Fig. 9. The percentage of documented quality attributes per
system among the commits improving the quality attributes.

a

e

m

6

a

r

c

t

w

t

w

b

i

i

m

i

t

r

t

a

s

t

r

p

4

r

e

q

f

t

h

r

c

b

m

4

t

q

o

q

i

t

e

o

T

a

r

m

i

i

a

c

i

f

d

a

t

r

c

a

p

a

t

r

t

F

r

i

t

t

f

c

o

m

5

m

t

r
n average of over 30% of all commits. The Atomix system has the high-
st number of commits related to refactoring. We found that 211 com-
it messages documented the applied refactorings, which is more than
0% of commits containing refactorings. The same observation can be
pplied to the remaining systems. While developers extensively apply
efactorings, they may not document all of them. Still there are enough
ommits including refactoring documentation to identify further oppor-
unities for refactoring.

We also investigated the main quality attributes of QMOOD that
ere documented by developers in the commit messages when refac-

orings were applied to improve those attributes. As described in Fig. 9 ,
e found understandability to be the most common quality documented
y developers in commit messages. In 4 of the 6 open source systems
t is the most common quality attribute documented by developers. For
nstance, the developers mentioned the rationale of understandability in
essages in 53% of the commits improving the Atomix system. Reusabil-

ty is the second most documented rationale, on average, in the six sys-
ems. It is also normal that developers document the rationale of the
efactorings in combination with the features that were modified (func-
ionality).

To conclude, we found that developers do document refactorings
nd they extensively apply refactorings over the commits of all six open
ource systems. Our results show that developers mention quality at-
ributes as a rationale for their refactorings in over 50% of commits
elated to refactoring that are documented, which is enough to find op-
ortunities for enhanced refactorings.

.3.2. Results for RQ2

Fig. 10 shows that developers are documenting their intention to
efactor the code to address quality issues in the commit messages; how-
ver we did not find any quality improvements when we analyzed the
uality changes in the files of these commits. For the Btm system, we
ound that only 32 out of 149 commits related to refactoring have ac-
ual quality changes. Only 60 out 236 commits related to refactorings
ave actual quality changes despite developers commenting on applying
efactorings in their commit messages.

It is clear that developers highlight their intention to refactor the
ode with its rationale; however no actual quality improvements have
een observed in many commits. This conclusion is one of the main
otivations for RQ3.

.3.3. Results for RQ3

After validating the two hypotheses of the previous research ques-
ions, we implemented our Refcom tool for improving the QMOOD
uality attributes by integrating a filter to guide the refactoring rec-
mmendations based on rationale identified in the previous research
uestions (what quality attributes and which files do developers want to
mprove?). Fig. 9 shows that developers documented refactorings with
he intention of improving all the 6 quality attributes but with differ-
nt levels of frequency. For instance, it is clear that developers focused
n improving both understandability and reusability in project atomix.
hus, we executed our multi-objective algorithm using all the 6 quality
ttributes then we filter the Pareto front based on the two main crite-
ia that are contained in the extracted refactoring rationale. First, we
ake sure that the selected solution is the one that provides the highest

mprovement in the quality attributes extracted from the commits dur-
ng our analysis step (e.g. understandability and reusability in project
tomix). Second, the optimal solution should also refactor the detected
hanged files in the commits. We compared our results with two exist-
ng refactoring tools. Ouni [33] proposed a multi-objective refactoring
ormulation based on NSGA-II that generates a solution to maximize the
esign coherence and refactoring reuse from previous releases. JDeodor-
nt [34] is an Eclipse plugin to detect bad smells and apply refactorings.

Fig. 11 highlights the out-performance of RefCom compared to the
ools of Ouni et al. [33] and JDeodorant [34] . In fact, most refactorings
ecommended by our approach are relevant, and all of them were suc-
essfully applied for the case Atomix system on the expected files and
chieved high-quality improvements, based on the feedback from the
articipants.

By looking at the comments left by participants when justifying their
ssessments, thirteen out of the twenty four developers highlighted in
heir comments about the refactoring sequences that they found the
efactorings relevant because they are completing the effort started by
he submitter of the developer as described in the commit messages.
or example, one of the developers wrote in a comment: “I found these

efactorings really improving the reusability of this class which is the main

ntention of the developer but he just applied couple of move methods. I found

he tool recommendation even better to improve the reusability. ”. We found
his comment as important qualitative evidence of only the value of Re-
Com in terms of analyzing the recently closed pull-requests to identify
hanged files and fix the identified quality issues in these files.

Thus RefCom provided relevant refactoring recommendations based
n the commit analysis, outperforming existing approaches to recom-
end refactorings.

. Threats to validity

We discuss in this section the different threats related to our experi-
ents.

The threats to internal validity can be related to the list of keywords
hat we used to identify the commits where developers documented
efactorings. However, the impact of this threat was limited by con-

S. Rebai, M. Kessentini and V. Alizadeh et al. Information and Software Technology 126 (2020) 106332

Fig. 10. Missed documented refactoring opportunities in the
6 systems.

Fig. 11. The relevance of the recommended refactorings by
RefCom compared to existing refactoring approaches.

s

a

r

t

e

a

c

i

t

p

f

e

t

i

m

d

e

6

6

s

r

b

v

s

c

t

p

i

n

C

p

o

s

i

e

t

c

s

i

b

t
idering the use of RefactoringMiner to identify the actual refactorings
pplied by developers. The parameters tuning of the optimization algo-
ithm used in our experiments may create an internal threat that needs
o be evaluated in future work since the parameter values used in our
xperiments were found by trial and error.

Construct validity is concerned with the relationship between theory
nd what is observed. We have used the QMOOD quality attributes to
apture the quality changes between commits. While the QMOOD model
s already empirically validated by existing studies [54] , it is possible
hat some quality changes may not be detected using QMOOD.

External validity refers to the generalizability of our findings. We
erformed our experiments on 6 open-source systems belonging to dif-
erent domains. However, we cannot assert that our results can be gen-
ralized to other applications and other developers. Moreover, we found
hat only 32 out of 149 commits related to refactoring have actual qual-
ty changes which limits the generalizability of our findings and requires
ore experiments. Another threat could be the number of subjects (24
evelopers) used for validation. Future replications of this study are nec-
ssary to confirm our findings.

. Related work

.1. Detection refactoring opportunities

Several approaches have been proposed to automatically detect de-
ign flaws (anti-patterns, code smells) [55–64] . We only discuss a few
epresentative works and refer the interested reader to the recent survey
y Sharma and Spinellis [65] for a complete overview.

Marinescu [8] proposes a metric-based mechanism to capture de-
iations from good design principles and heuristics, called “detection
trategies ”. Such strategies are based on the identification of symptoms

haracterizing a particular smell and metrics for measuring such symp-
oms.

Moha et al. [66] exploit a similar idea in their DECOR approach,
roposing a Domain-Specific Language (DSL) for specifying smells us-
ng high-level abstractions. Four design smells are identified by DECOR,
amely Blob, Swiss Army Knife, Functional Decomposition , and Spaghetti

ode .
Design flaw detection can also be formulated as an optimization

roblem, as pointed out by Kessentini et al. [38] . They present a co-
perative parallel search-based approach for identifying code smell in-
tances. The idea here is that many evolutionary algorithms are executed
n parallel to solve a common goal (the detection of code smells). The
mpirical evaluation reported in the paper shows the high accuracy of
he proposed approach (recall and precision higher than 85%).

Besides metrics exploiting structural information extracted from the
ode, Palomba et al. [67] provide evidence that historical data can be
uccessfully exploited to identify code smells; not only smells that are
ntrinsically characterized by their evolution across the program history
ut also smells such as Blob and Feature Envy.

Despite the extensive studies on the detection of refactoring oppor-
unities [65,68] , none of them considered the use of commit messages to

S. Rebai, M. Kessentini and V. Alizadeh et al. Information and Software Technology 126 (2020) 106332

u

i

a

H

a

i

6

p

p

r

s

r

s

s

o

[

s

C

M

f

s

t

t

r

t

b

(

a

t

h

i

d

s

m

r

p

b

s

i

6

i

b

t

v

v

t

o

f

t

r

l

d

e

o

r

t

d

t

s

7

c

i

a

a

w

t

s

b

r

p

p

c

t

t

D

i

t

C

S

D

t

d

S

M

R

[

[

[

nderstand developer intentions during refactoring and the type of qual-
ty issues they want to address. The main assumption of most of these
pproaches is that developers want to fix code smells and antipatterns.
owever, we found that developers largely did not use terms related to
ntipatterns or code smells when describing and documenting refactor-
ng opportunities in practice.

.2. Refactoring recommendation

Much effort has been devoted to the definition of approaches sup-
orting refactoring. One representative example is JDeodorant, the tool
roposed by Tsantalis and Chatzigeorgiou [69] . We point the interested
eader to the survey by Bavota et al. [70] for an overview of approaches
upporting code refactoring.

O’Keeffe and Cinnéide [71] presented the idea of formulating the
efactoring task as a search problem in the space of alternative de-
igns, generated by applying a set of refactoring operations. Such a
earch is guided by a quality evaluation function based on eleven object-
riented design metrics that reflect refactoring goals. Harman and Tratt
72] were the first to introduce the concept of Pareto optimality to
earch-based refactoring. They used it to combine two metrics, namely
BO (Coupling Between Objects) and SDMPC (Standard Deviation of
ethods Per Class), into a fitness function and showed its superior per-

ormance as compared to a mono-objective technique [72] .
The two aforementioned works [71,72] paved the way to several

earch-based approaches aimed at recommending refactoring opera-
ions [33,43,73–76] . A representative example of these techniques is
he recent work by Ouni et al. [33] , who propose a multi-criteria code
efactoring approach aimed at optimizing five objectives: (i) minimizing
he number of code smells; (ii) minimizing the refactoring cost (the num-
er of recommended refactorings); (iii) preserving the design semantics
meaning considering textual information embedded in code identifiers
nd comments in the refactoring recommendation); and (iv) maximizing
he consistency with code changes performed over the system’s change
istory.

Murphy-Hill et al. [9] show that semi-automated tools for refactor-
ngs have been underutilized. In fact, fully automatic refactoring usually
oes not lead to the desired architecture and thus a designer’s feedback
hould be included. Other studies also highlighted that developers are
ainly interested in incremental refactoring and they are combining

egular code changes such as bug-fixing with refactoring [19] . We pro-
osed, in this paper, another perception to the way that refactorings can
e recommended by extracting relevant information from commit mes-
ages and providing better suggestions to refactor the files related to the
nterests of the developers.

.3. Empirical studies on refactoring

Empirical studies on software refactoring mainly aim at investigat-
ng the refactoring habits of software developers and the relationship
etween refactoring and code quality.

Murphy-Hill et al. [42] investigated how developers perform refac-
orings. Examples of the exploited datasets are usage data from 41 de-
elopers using the Eclipse environment and information extracted from
ersioning systems. Among their findings they show that developers of-
en perform floss refactoring , namely they interleave refactoring with
ther programming activities, confirming that refactoring is rarely per-
ormed in isolation. Kim et al. [29] present a survey of software refac-
oring with 328 Microsoft engineers. To investigate when and how they
efactor code and developer perception of the benefits, risks, and chal-
enges of refactoring. They show that the major risk factor perceived by
evelopers is the introduction of bugs and one of the main benefits they
xpect is to have fewer bugs in the future, thus indicating the usefulness
f refactoring for code components exhibiting high fault-proneness. A
ecent empirical study [77] shows that developers have a mispercep-
ion of quality metrics, as compared to terms used in academia, when
ocumenting refactorings which motivates our work where we look at
he actual metric changes rather than just the term in the commit mes-
ages, when recommending refactorings.

. Conclusion

We presented a first attempt to recommend refactorings by analyzing
ommit messages. The salient feature of the proposed RefCom approach
s its ability to capture developers need, from their commit messages,
nd propose to them refactorings to enhance their changes to better
ddress quality issues. To evaluate the effectiveness of our technique,
e applied it to six open-source projects and compared it with state-of-

he-art approaches that rely on static and dynamic analysis. Our results
how promising evidence on the usefulness of the proposed commit-
ased refactoring approach.

Future work will involve validating our technique with additional
efactoring types, programming languages and a more extensive set of
rojects and commits to investigate the general applicability of the pro-
osed methodology. We will also check the relevance of integrating
ommit messages in finding and recommending refactoring opportuni-
ies then fixing them based on different refactoring recommendations
ools beyond our previous work.

eclaration of Competing Interest

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to influence
he work reported in this paper.

RediT authorship contribution statement

Soumaya Rebai: Data curation, Conceptualization, Methodology,
oftware, Writing - original draft. Marouane Kessentini: Supervision,
ata curation, Methodology, Writing - original draft, Conceptualiza-

ion. Vahid Alizadeh: Data curation, Methodology, Writing - original
raft. Oussama Ben Sghaier: Data curation, Writing - original draft,
oftware. Rick Kazman: Writing - original draft, Conceptualization,
ethodology.

eferences

[1] M. Fowler , Refactoring: Improving the Design of Existing Code, Addison-Wesley
Longman Publishing Co., Inc., 1999 .

[2] M. Feathers , Working Effectively with Legacy Code: WORK EFFECT LEG CODE _p1,
Prentice Hall Professional, 2004 .

[3] J. Kerievsky , Refactoring to Patterns, Pearson Higher Education, 2004 .
[4] R. Kazman , Y. Cai , R. Mo , Q. Feng , L. Xiao , S. Haziyev , V. Fedak , A. Shapoc-

hka , A case study in locating the architectural roots of technical debt, in: 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, 2, IEEE,
2015, pp. 179–188 .

[5] J. Carriere , R. Kazman , I. Ozkaya , A cost-benefit framework for making architectural
decisions in a business context, in: 2010 ACM/IEEE 32nd International Conference
on Software Engineering, 2, IEEE, 2010, pp. 149–157 .

[6] M. Kim , M. Gee , A. Loh , N. Rachatasumrit , Ref-finder: a refactoring reconstruc-
tion tool based on logic query templates, in: Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations of Software Engineering, ACM,
2010, pp. 371–372 .

[7] D. Batory , J.N. Sarvela , A. Rauschmayer , Scaling step-wise refinement, IEEE Trans.
Softw. Eng. 30 (6) (2004) 355–371 .

[8] R. Marinescu , Detection strategies: metrics-based rules for detecting design flaws, in:
20th IEEE International Conference on Software Maintenance, 2004. Proceedings,
IEEE, 2004, pp. 350–359 .

[9] E. Murphy-Hill , C. Parnin , A.P. Black , How we refactor, and how we know it, IEEE
Trans. Softw. Eng. 38 (1) (2012) 5–18 .

10] D. Dig , C. Comertoglu , D. Marinov , R. Johnson , Automated detection of refactorings
in evolving components, in: European Conference on Object-Oriented Programming,
Springer, 2006, pp. 404–428 .

11] J. Kim , D. Batory , D. Dig , M. Azanza , Improving refactoring speed by 10x, in: 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE), IEEE,
2016, pp. 1145–1156 .

12] A. Ouni , M. Kessentini , H. Sahraoui , M. Boukadoum , Maintainability defects detec-
tion and correction: a multi-objective approach, Autom. Softw. Eng. 20 (1) (2013)
47–79 .

http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0001
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0001
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0012

S. Rebai, M. Kessentini and V. Alizadeh et al. Information and Software Technology 126 (2020) 106332

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

13] M.W. Mkaouer , M. Kessentini , S. Bechikh , K. Deb , M. Ó Cinnéide , Recommendation
system for software refactoring using innovization and interactive dynamic opti-
mization, in: Proceedings of the 29th ACM/IEEE International Conference on Auto-
mated Software Engineering, ACM, 2014, pp. 331–336 .

14] B. Du Bois , S. Demeyer , J. Verelst , Refactoring-improving coupling and cohesion
of existing code, in: 11th working Conference on Reverse Engineering, IEEE, 2004,
pp. 144–151 .

15] A. Ouni , M. Kessentini , H. Sahraoui , K. Inoue , K. Deb , Multi-criteria code refactoring
using search-based software engineering: an industrial case study, ACM Trans. Softw.
Eng. Methodol. (TOSEM) 25 (3) (2016) 23 .

16] I.H. Moghadam , M. Ó Cinnéide , Code-imp: a tool for automated search-based refac-
toring, in: Proceedings of the 4th Workshop on Refactoring Tools, ACM, 2011,
pp. 41–44 .

17] Y. Zhang , G. Huang , X. Liu , W. Zhang , H. Mei , S. Yang , Refactoring android java
code for on-demand computation offloading, in: ACM Sigplan Notices, 47, ACM,
2012, pp. 233–248 .

18] V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni, Y. Cai, An interac-
tive and dynamic search-based approach to software refactoring recommendations,
IEEE Trans. Softw. Eng. 46 (2018) 171–213, doi: 10.1109/TSE.2018.2872711 .

19] V. Alizadeh , M. Kessentini , Reducing interactive refactoring effort via cluster-
ing-based multi-objective search, in: Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering, ACM, 2018, pp. 464–474 .

20] M. O’Keeffe , M.O. Cinnéide , Search-based refactoring for software maintenance, J.
Syst. Softw. 81 (4) (2008) 502–516 .

21] W. Brown , R. Malveau , S. McCormick , T. Mowbray , AntiPatterns: Refactoring Soft-
ware, Architectures, and Projects in Crisis, Wiley, 1998 .

22] V. Alizadeh, M. Kessentini, Reducing interactive refactoring effort via clustering-
based multi-objective search, in: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, ACM, New York, NY,
USA, 2018, pp. 464–474, doi: 10.1145/3238147.3238217 .

23] Y. Lin , X. Peng , Y. Cai , D. Dig , D. Zheng , W. Zhao , Interactive and guided architec-
tural refactoring with search-based recommendation, in: Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, 2016, pp. 535–546 .

24] J.J. Yackley , G. Bavota , M. Kessentini , V. Alizadeh , B. Maxim , Simultaneous refac-
toring and regression testing: a multi-tasking approach, in: Proceedings of the 19th
IEEE International Working Conference on Source Code Analysis and Manipulation
SCAM2019, 2019, p. 12 .

25] S. Rebai , O.B. Sghaier , V. Alizadeh , M. Kessentini , M. Chater , Interactive refactoring
documentation bot, in: Proceedings of the 19th IEEE International Working Confer-
ence on Source Code Analysis and Manipulation SCAM2019, 2019, p. 12pages .

26] J. Pantiuchina, M. Lanza, G. Bavota, Improving code: the (Mis) perception of qual-
ity metrics, in: 2018 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2018, Madrid, Spain, September 23–29, 2018, 2018, pp. 80–91,
doi: 10.1109/ICSME.2018.00017 .

27] E. Murphy-Hill , A.P. Black , Refactoring tools: fitness for purpose, IEEE Softw. 25 (5)
(2008) 38–44 .

28] G. Bavota , B.D. Carluccio , A.D. Lucia , M.D. Penta , R. Oliveto , O. Strollo , When does
a refactoring induce bugs? An empirical study, in: 12th IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM, 2012, pp. 104–113 .

29] M. Kim , T. Zimmermann , N. Nagappan , An empirical study of refactoringchallenges
and benefits at microsoft, Softw. Eng. IEEE Trans. 40 (7) (2014) 633–649 .

30] E.A. AlOmar, M.W. Mkaouer, A. Ouni, Can refactoring be self-affirmed?: An
exploratory study on how developers document their refactoring activities
in commit messages, in: Proceedings of the 3rd International Workshop on
Refactoring, IWOR ’19, IEEE Press, Piscataway, NJ, USA, 2019, pp. 51–58,
doi: 10.1109/IWoR.2019.00017 .

31] G. Soares , R. Gheyi , T. Massoni , Automated behavioral testing of refactoring engines,
IEEE Trans. Softw. Eng. 39 (2) (2013) 147–162 .

32] N. Tsantalis, M. Mansouri, L.M. Eshkevari, D. Mazinanian, D. Dig, Accurate and ef-
ficient refactoring detection in commit history, in: Proceedings of the 40th Interna-
tional Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May
27–June 03, 2018, 2018, pp. 483–494, doi: 10.1145/3180155.3180206 .

33] A. Ouni , M. Kessentini , H. Sahraoui , K. Inoue , K. Deb , Multi-criteria code refactoring
using search-based software engineering: an industrial case study, ACM Trans. Softw.
Eng. Methodol. (TOSEM) 25 (3) (2016) 23 .

34] M. Fokaefs , N. Tsantalis , E. Stroulia , A. Chatzigeorgiou , JDeodorant: identification
and application of extract class refactorings, in: 33rd International Conference on
Software Engineering (ICSE), 2011, pp. 1037–1039 .

35] J. Bansiya , C.G. Davis , A hierarchical model for object-oriented design quality as-
sessment, IEEE Trans. Softw. Eng. 28 (1) (2002) 4–17 .

36] M. O’Keeffe , M.O. Cinnéide , Search-based refactoring: an empirical study, J. Softw.
Maint. Evol. 20 (5) (2008) 345–364 .

37] M. Ó Cinnéide , L. Tratt , M. Harman , S. Counsell , I. Hemati Moghadam , Experimen-
tal assessment of software metrics using automated refactoring, in: International
Symposium on Empirical Software Engineering and Measurement (ESEM), 2012,
pp. 49–58 .

38] W. Kessentini , M. Kessentini , H. Sahraoui , S. Bechikh , A. Ouni , A cooperative parallel
search-based software engineering approach for code-smells detection, IEEE Trans.
Softw. Eng. 40 (9) (2014) 841–861 .

39] A.C. Jensen , B.H. Cheng , On the use of genetic programming for automated refac-
toring and the introduction of design patterns, in: Proceedings of the 12th An-
nual Conference on Genetic and Evolutionary Computation, ACM, 2010, pp. 1341–
1348 .

40] S. Lee , G. Bae , H.S. Chae , D.-H. Bae , Y.R. Kwon , Automated scheduling for
clone-based refactoring using a competent GA, Software 41 (5) (2011) 521–550 .
41] R. Khatchadourian , H. Masuhara , Automated refactoring of legacy java software to
default methods, in: Proceedings of the 39th International Conference on Software
Engineering, IEEE Press, 2017, pp. 82–93 .

42] E. Murphy-Hill , C. Parnin , A.P. Black , How we refactor, and how we know it, IEEE
Trans. Softw. Eng. (TSE) 38 (1) (2011) 5–18 .

43] W. Mkaouer , M. Kessentini , A. Shaout , P. Koligheu , S. Bechikh , K. Deb , A. Ouni ,
Many-objective software remodularization using NSGA-III, ACM Trans. Softw. Eng.
Methodol. (TOSEM) 24 (3) (2015) 17:1–17:45 .

44] A. Alali , H. Kagdi , J.I. Maletic , What’s a typical commit? a characterization of open
source software repositories, in: Proc. 16th, 2008, pp. 182–191 .

45] H.F. Vahid Alizadeh , M. Kessentini , Less is more: From multi-objective to mono-ob-
jective refactoring via developers knowledge extraction, in: Proceedings of the 19th
IEEE International Working Conference on Source Code Analysis and Manipulation
SCAM2019, 2019, p. 12pages .

46] A. Bachmann , C. Bird , F. Rahman , P. Devanbu , A. Bernstein , The missing links: Bugs
and bug-fix commits, in: Proc. 16th, 2010 .

47] A. Bosu , J.C. Carver , C. Bird , J. Orbeck , C. Chockley , Process aspects and social
dynamics of contemporary code review: insights from open source development and
industrial practice at microsoft, IEEE Trans. Softw. Eng. 43 (1) (2017) 56–75 .

48] M. Beller , A. Bacchelli , A. Zaidman , E. Juergens , Modern code reviews in open–
source projects: Which problems do they fix? in: Proceedings of the 11th Working
Conference on Mining Software Repositories, ACM, 2014, pp. 202–211 .

49] E. Murphy-Hill , C. Parnin , A.P. Black , How we refactor, and how we know it, IEEE
Trans. Softw. Eng. 38 (1) (2011) 5–18 .

50] Recommending Rfactorings via Commit Message Analyis, URL https://sites.
google.com/view/istrefcom .

51] M. Fowler , Refactoring: Improving the Design of Existing Code, Addison-Wesley Pro-
fessional, 1999 .

52] K. Deb , A. Pratap , S. Agarwal , T. Meyarivan , A fast and elitist multiobjective genetic
algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197 .

53] A.J. Ko , T.D. Latoza , M.M. Burnett , A practical guide to controlled experiments
of software engineering tools with human participants, Empir. Softw. Eng. 20 (1)
(2015) 110–141 .

54] O. Baysal , R. Holmes , A qualitative study of Mozilla’s process management practices,
Tech. Rep. CS-2012-10, David R. Cheriton School of Computer Science, University
of Waterloo, Waterloo, Canada, 2012 .

55] A. Ghannem , M. Kessentini , G. El Boussaidi , Detecting model refactoring opportuni-
ties using heuristic search, in: Proceedings of the 2011 Conference of the Center for
Advanced Studies on Collaborative Research, 2011, pp. 175–187 .

56] M. Kessentini , P. Langer , M. Wimmer , Searching models, modeling search: On the
synergies of SBSE and MDE, in: 2013 1st International Workshop on Combining Mod-
elling and Search-Based Software Engineering (CMSBSE), IEEE, 2013, pp. 51–54 .

57] M. Kessentini , R. Mahaouachi , K. Ghedira , What you like in design use to correct
bad-smells, Softw. Qual. J. 21 (4) (2013) 551–571 .

58] A. Ghannem , G. El Boussaidi , M. Kessentini , Model refactoring using examples: a
search-based approach, J. Softw. 26 (7) (2014) 692–713 .

59] A. Ouni , M. Kessentini , S. Bechikh , H. Sahraoui , Prioritizing code-smells
correction tasks using chemical reaction optimization, Softw. Qual. J. 23 (2) (2015)
323–361 .

60] M. Kessentini , A. Ouni , P. Langer , M. Wimmer , S. Bechikh , Search-based
metamodel matching with structural and syntactic measures, J. Syst. Softw. 97
(2014) 1–14 .

61] B. Amal , M. Kessentini , S. Bechikh , J. Dea , L.B. Said , On the use of machine learning
and search-based software engineering for ill-defined fitness function: a case study
on software refactoring, in: International Symposium on Search Based Software En-
gineering, Springer, Cham, 2014, pp. 31–45 .

62] A. Ghannem , G. El Boussaidi , M. Kessentini , On the use of design defect
examples to detect model refactoring opportunities, Softw. Qual. J. 24 (4) (2016)
947–965 .

63] H. Wang , M. Kessentini , A. Ouni , Bi-level identification of web service de-
fects, in: International Conference on Service-Oriented Computing, Springer, 2016,
pp. 352–368 .

64] A. Ouni , M. Kessentini , M. Ó Cinnéide , H. Sahraoui , K. Deb , K. Inoue , More: a multi-
-objective refactoring recommendation approach to introducing design patterns and
fixing code smells, J. Softw. 29 (5) (2017) .

65] T. Sharma , D. Spinellis , A survey on software smells, J. Syst. Softw. 138 (2018)
158–173 .

66] N. Moha , Y.-G. Guéhéneuc , L. Duchien , A.-F.L. Meur , Decor: a method for the spec-
ification and detection of code and design smells, IEEE Trans. Softw. Eng. 36 (1)
(2010) 20–36 .

67] F. Palomba , G. Bavota , M. Di Penta , R. Oliveto , D. Poshyvanyk , A. De Lucia , Mining
version histories for detecting code smells, IEEE Trans. Softw. Eng. 41 (5) (2015)
462–489 .

68] M.W. Mkaouer, M. Kessentini, S. Bechikh, M. O ź Cinne ź Ide, K. Deb, On the use
of many quality attributes for software refactoring: a many-objective search-based
software engineering approach, Empir. Softw. Eng. 21 (6) (2016) 2503–2545,
doi: 10.1007/s10664-015-9414-4 .

69] N. Tsantalis , A. Chatzigeorgiou , Identification of move method refactoring opportu-
nities, IEEE Trans. Softw. Eng. 35 (3) (2009) 347–367 .

70] G. Bavota , A. De Lucia , A. Marcus , R. Oliveto , Recommending refactoring opera-
tions in large software systems, in: M.P. Robillard, W. Maalej, R.J. Walker, T. Zim-
mermann (Eds.), Recommendation Systems in Software Engineering, Springer Berlin
Heidelberg, 2014, pp. 387–419 .

71] M. O’Keeffe , M. Ó Cinnéide , A stochastic approach to automated design improve-
ment, in: International Conference on Principles and Practice of Programming in
Java, Computer Science Press, Inc., 2003, pp. 59–62 .

http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0017
https://doi.org/10.1109/TSE.2018.2872711
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0021
https://doi.org/10.1145/3238147.3238217
http://refhub.elsevier.com/S0950-5849(20)30091-4/othref0001
http://refhub.elsevier.com/S0950-5849(20)30091-4/othref0001
http://refhub.elsevier.com/S0950-5849(20)30091-4/othref0001
http://refhub.elsevier.com/S0950-5849(20)30091-4/othref0001
http://refhub.elsevier.com/S0950-5849(20)30091-4/othref0001
http://refhub.elsevier.com/S0950-5849(20)30091-4/othref0001
http://refhub.elsevier.com/S0950-5849(20)30091-4/othref0001
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0024
https://doi.org/10.1109/ICSME.2018.00017
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0028
https://doi.org/10.1109/IWoR.2019.00017
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0030
https://doi.org/10.1145/3180155.3180206
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0044
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0044
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0044
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0047
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0047
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0047
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0047
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0047
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0048
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0048
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0048
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0048
https://sites.google.com/view/istrefcom
http://refhub.elsevier.com/S0950-5849(20)30091-4/othref0003
http://refhub.elsevier.com/S0950-5849(20)30091-4/othref0003
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0049
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0049
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0049
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0049
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0049
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0050
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0050
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0050
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0050
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0051
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0051
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0051
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0052
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0052
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0052
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0052
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0053
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0053
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0053
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0053
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0054
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0054
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0054
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0054
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0055
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0055
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0055
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0055
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0056
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0056
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0056
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0056
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0056
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0057
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0057
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0057
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0057
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0057
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0057
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0058
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0058
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0058
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0058
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0058
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0058
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0059
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0059
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0059
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0059
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0060
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0060
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0060
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0060
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0061
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0061
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0061
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0061
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0061
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0061
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0061
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0062
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0062
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0062
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0063
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0063
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0063
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0063
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0063
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0064
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0064
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0064
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0064
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0064
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0064
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0064
https://doi.org/10.1007/s10664-015-9414-4
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0066
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0066
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0066
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0067
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0067
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0067
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0067
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0067
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0068
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0068
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0068

S. Rebai, M. Kessentini and V. Alizadeh et al. Information and Software Technology 126 (2020) 106332

[

[

[

[

[

[

72] M. Harman , L. Tratt , Pareto optimal search based refactoring at the design
level, in: 9th Annual Conference on Genetic and evolutionary Computation, 2007,
pp. 1106–1113 .

73] O. Seng , J. Stammel , D. Burkhart , Search-based determination of refactorings
for improving the class structure of object-oriented systems, in: International
Conference on Genetic and Evolutionary Computation, ACM, 2006, pp. 1909–1916 .

74] M. Kessentini , W. Kessentini , H. Sahraoui , M. Boukadoum , A. Ouni , Design defects
detection and correction by example, in: International Conference on Program Com-
prehension (ICPC), IEEE, 2011, pp. 81–90 .

75] A. Ouni , M. Kessentini , H. Sahraoui , Search-based refactoring using recorded code
changes, in: Proceedings of the 17th European Conference on Software Maintenance
and Reengineering (CSMR 2013), 2013, pp. 221–230 .
76] M.W. Mkaouer , M. Kessentini , S. Bechikh , K. Deb , M. Ó Cinnéide , Recommendation
system for software refactoring using innovization and interactive dynamic opti-
mization, in: Proceedings of the 29th ACM/IEEE International Conference on Auto-
mated Software Engineering (ASE 2014), 2014, pp. 331–336 .

77] P.W. McBurney , S. Jiang , M. Kessentini , N.A. Kraft , A. Armaly , M.W. Mkaouer ,
C. McMillan , Towards prioritizing documentation effort, IEEE Trans. Softw. Eng.
44 (9) (2018) 897–913 .

http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0069
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0069
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0069
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0070
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0070
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0070
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0070
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0071
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0071
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0071
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0071
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0071
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0071
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0072
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0072
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0072
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0072
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0073
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0073
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0073
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0073
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0073
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0073
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0074
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0074
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0074
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0074
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0074
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0074
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0074
http://refhub.elsevier.com/S0950-5849(20)30091-4/sbref0074

	Recommending refactorings via commit message analysis
	1 Introduction
	2 Problem statement
	2.1 Background
	2.1.1 Quality attributes
	2.1.2 Commits and refactoring

	2.2 Motivation
	2.2.1 Understanding the refactoring rationale is a key for relevant recommendations
	2.2.2 Developers describe and document refactoring opportunities in commit messages
	2.2.3 Developers may not manually find the best refactoring strategy meeting their needs

	3 RefCom: commit-based refactoring recommendations
	3.1 Refactoring related commit extraction
	3.2 Identifying refactoring rationale from commits
	3.3 Refactoring recommendations
	3.4 Running example

	4 Evaluation
	4.1 Research questions
	4.2 Experimental setting
	4.3 Results
	4.3.1 Results for RQ1
	4.3.2 Results for RQ2
	4.3.3 Results for RQ3

	5 Threats to validity
	6 Related work
	6.1 Detection refactoring opportunities
	6.2 Refactoring recommendation
	6.3 Empirical studies on refactoring

	7 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References

