
Metamodel Refactoring using Constraint Solving:
a Quality-based Perspective

Oussama Ben Sghaier
Université de Montréal

Montréal, Canada

oussama.ben.sghaier@umontreal.ca

Houari Sahraoui
Université de Montréal

Montréal, Canada

sahraouh@iro.umontreal.ca

Michalis Famelis
Université de Montréal

Montréal, Canada

famelis@iro.umontreal.ca

Abstract—The design of metamodels is a main task in model-
driven engineering where modellers need to consider many qual-
ity factors. However, metamodels are subject to many changes
during the software life cycle due to the evolution of requirements
or for maintenance purposes. These changes may harm their
quality by introducing bad smells that make the metamodels
more complex and less understandable. Refactoring metamodels
by removing bad smells is not an easy task due to their size, the
need to achieve high standards of conflicting quality factors, and
the many possible refactoring solutions. We propose a quality-
driven approach to refactoring metamodels using constraint
solving. We encode both the removal of bad smells and the quality
criteria as a set of constraints. Then, we use a constraint solver
to find a sequence of refactoring operations that satisfies both
constraints. We illustrate the efficiency of our approach through
a case study. The latter shows that the refactoring solution
we obtain improves the time and correctness of performing
understandability and extendibility tasks, as compared to other
alternatives.

Index Terms—constraint solving, software quality, refactoring,
model-driven engineering.

I. INTRODUCTION

Assisting software practitioners in their tasks is very im-

portant for the sake of delivering high software quality and in

order to maintain an elevated level of software practitioner’s

efficiency and productivity [1]–[4]. In particular, the design

of metamodels is an important task in the software genera-

tion workflow. Metamodels constitute a fundamental artifact

in Model-Driven Engineering (MDE). They are the essence

of many modelling activities such as language engineering,

model transformation, code generation, consistency and con-

formance validation [5]. Therefore, they should be carefully

designed by considering relevant quality factors.

Nevertheless, metamodels are subject to several and contin-

uous modifications related to the evolution and maintenance

requirements. These changes may harm the quality of the

metamodels by increasing their complexity, decreasing their

understandability and extendibility, etc. Since many MDE

artifacts depend on metamodels, this eventually negatively im-

pacts productivity, increases fault-proneness and maintenance

costs [6]–[8].

To cope with this situation, metamodels need to be regularly

maintained through refactoring to improve their quality and

to avoid technical debt. An approach to refactor metamodels

consists of smells detection and correction [9], [10]. The

detection phase consists of identifying bad design decisions.

The correction phase consists of removing bad smells using

the appropriate refactoring operations. An example of a bad

smell is “dead class” which consists of a class disconnected

from the rest of the design [11]. The corresponding refactoring

operation entails removing the dead class.

Metamodel maintenance is very important but also chal-

lenging, as it requires a lot of effort and should take care of

many quality criteria, such as understandability, extendibility,

and maintainability. Improving the metamodel quality is a

complex task since quality factors are conflicting [12], [13].

For instance, improving the extendibility of the metamodel by

introducing some super-classes containing the duplicated fea-

tures may harm the understandability of the design. Therefore,

refactoring metamodels should be driven by the improvement

of quality and should find the best compromise between the

different quality factors as well as the number of smells to be

removed.

Many approaches were proposed for metamodels or models

refactoring. These approaches are based on formal methods

(e.g., [14]), model transformations (e.g., [15]), or a learning

process from preexisting examples (e.g., [16], [17]). These

proposed methods use different techniques to detect refactor-

ing opportunities without worrying about the quality factor

which is the main goal of refactoring. The refactoring opera-

tion should not be performed haphazardly but rather be based

on well-defined objectives, such as improving certain quality

criteria.

Bettini et al. presented in [11] a quality-driven framework

for detecting and resolving metamodel smells. They define a

static mapping between design smells and quality attributes.

Then, refactoring a metamodel consists of removing all the

bad smells that have an impact on the target quality attributes.

Nevertheless, removing all design smells from a metamodel is

not necessarily the best solution, as it might not lead to the

best overall values of quality attributes. In fact, it is known

that quality attributes are potentially conflicting [12], [13].

Improving one quality criterion could lead to the degradation

of another. For example, introducing too many elements to

a metamodel to improve its flexibility and extendibility may

harm its understandability. Thus, a refactoring solution should

find the best trade-off with respect to the target quality

attributes.

797

2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C)

978-1-6654-2484-4/21/$31.00 ©2021 IEEE
DOI 10.1109/MODELS-C53483.2021.00126

20
21

 A
C

M
/IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 M
od

el
 D

riv
en

 E
ng

in
ee

rin
g

La
ng

ua
ge

s a
nd

 S
ys

te
m

s C
om

pa
ni

on
 (M

O
D

EL
S-

C
) |

 9
78

-1
-6

65
4-

24
84

-4
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
M

O
D

EL
S-

C
53

48
3.

20
21

.0
01

26

Authorized licensed use limited to: Université de Montréal. Downloaded on January 03,2022 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Metamodel for bank management systems

In this paper, we propose a quality-driven approach based

on constraint solving to refactor metamodels. Our approach

recommends refactoring solutions obtained by a trade-off

between quality factors and smell removal. We illustrate the

efficiency of our approach with a case study of a Customer

Relationship Management (CRM) metamodel. We measure the

time required to perform understandability and extendibility

tasks on this metamodel. We also evaluate the correctness of

the task output. The results show that our approach improves

the time and correctness of performing extendibility and under-

standability tasks and generates relevant refactoring solutions

that improve these quality factors of the metamodel.

The remainder of this paper is organized as follows: We

introduce a running example in Section II. Our approach

is described in Section III. Section IV is dedicated to an

illustrative case study. Finally, we outline the related work

in Section V and conclude in Section VI.

II. RUNNING EXAMPLE

We present the design of a simplified metamodel for bank

management systems as a running example that we will use

later to illustrate our approach.

As shown in Fig. 1, the Bank is the central class

that is composed of automated teller machines (ATMs) and

Branches. It employs FullTime or PartTime Employees.

The bank has Clients who hold different types of Accounts:

Checking, Savings or Retirement. An account logs a list

of transactions. A checking account can have a Loan

attached to it. Finally, the class Affiliate is used to store

information about employees’ affiliation to specific branches.

This metamodel contains many types of design smells [18],

which are the result of poor design decisions. We briefly

describe the following four smells.

Dead metaclass is a design smell identifying a class not

related to any other class in the metamodel, like Affiliate.

This is analogous to dead code which is defined as a fragment

of code that is no longer used [19]. This design smell may have

a negative impact on the quality of the metamodel because it

reduces its understandability and makes it more complex by

introducing unusable and useless elements in the metamodel.

Refactoring this smell consists of simply removing the class.

Classification by enumeration or by hierarchy is a design

smell that concerns cases where we should use enumeration in-

stead of an inheritance hierarchy of classes [18]. For instance,

an Employee can be classified as a FullTimeEmployee

or PartTimeEmployee. Depending on the use case, this

could be considered as a design smell since the two sub-

metaclasses do not add any new features. Alternatively, it could

be more appropriate to represent the employment type as an

enumeration inside Employee with these two values.

Concrete abstract metaclass is a design smell where

super-classes are concrete instead of abstract. For instance,

Employee should not be instantiated because an employee

must be one of the two subtypes. To refactor this smell, we

make the class abstract [11].

Duplicated features is another common smell, where the

same feature is duplicated in several classes [18]. For example,

some of the attributes are repeated in more than one class

(e.g., name in Employee and Client). This design smell can

be resolved by applying a pull-up attribute refactoring, if these

classes have a common super-class (e.g., interestRate in

the different subclasses of Account); otherwise, we should

create a super-class that unifies the duplicated features

(e.g., for the attribute name, we could create a class Person

and have Client and Employee inherit from it).

III. PROPOSED APPROACH

A. Overview

We propose a formal approach for improving metamodel

quality via refactoring that relies on constraint solving as the

reasoning back-end. The main benefit of constraint solving is

that it allows us to better model the different quality concerns

as constraints, as well as to reason about the different com-

promises and trade-offs between the constraints. To explore

the feasibility of such an approach, we use Alloy [20] as a

prototyping specification language to express as constraints:

(a) the quality criteria and (b) metamodel smells. Alloy is

a formal constraint specification language based on first-

order relational logic. It provides a lightweight modelling tool

to express and check properties of system specifications by

performing model checking within a finite bound. This makes

it well suited for rapid prototype development and allows

us to explore the feasibility of our constraint solving based

approach.

Having modelled quality criteria and smells as Alloy con-

straints, we use Alloy’s model finding capabilities to try to

798

Authorized licensed use limited to: Université de Montréal. Downloaded on January 03,2022 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Constraint solving approach for quality-driven refactoring of metamodels.

produce refactored versions of the given metamodel that sat-

isfy these constraints. Alloy returns a set of candidate solutions

which we interpret as recommendations for improving the

quality of the input metamodel. We show schematically our

approach in Fig. 2. It has two parts: (1) a detection phase

in which we check for the presence of design smells (2)

a refactoring phase where we remove the bad smells while

satisfying quality constraints.

First, we translate the input metamodel to an Alloy spec-

ification using a model transformation. We then encode the

absence of design smells as constraints, which we check

with the Alloy Analyzer. If smells exist in the metamodel,

we execute the refactoring phase. We encode the removal of

smells and the quality criteria as additional logical constraints,

which we combine with the encoding of the input metamodel.

We then use Alloy to generate refactored versions of the

metamodel. By construction, these satisfy the encoded quality

and absence-of-smells constraints. In the following, we present

our approach in detail.

B. MM2Alloy transformation

The initial phase is to transform the input metamodel class

diagram into an Alloy specification. We adapted the CD2Alloy
transformation by Maoz et al. [21], which translates UML

class diagrams to Alloy and provides tool support as an

eclipse plugin. Our variant, MM2Alloy, explicitly encodes

metamodel concepts such as the extensions, associations, and

their multiplicity and type.

The CD2Alloy plugin requires encoding the input class

diagram in a textual format. We show an excerpt of the

encoding of the bank management system metamodel (Fig. 1)

in this format in Listing 1. We also show the Alloy encoding

that is generated by MM2Alloy for this input in Listing 2.

A metamodel is represented as a class diagram (CD)

object (lines 33-38). It is defined by its classes, features
(i.e., attributes), associations and extensions (i.e., inheritance

relations). We translate classes to Alloy signatures that inherit

a common top-level signature named Obj (line 8). For ex-

ample, in line 17 of Listing 2, the class Branch is defined

as a signature extending Obj. The names of attributes and

associations inherit from a common signature FName (lines 4

1 package CD2Alloy;
2 classdiagram Bank_CD {

4 class Branch;
5 class ATM;
6 class Client {string name;}
7 class Transaction;
8 class Bank;
9 abstract class Account;

10 class SavingsAccount extends Account {
11 double interestRate;}
12 class CheckingAccount extends Account {
13 double interestRate;}
14 class RetirementAccount extends Account {
15 double interestRate;}
16 . . .
17 composition composition1
18 [1] Bank (bank) -> (branches) Branch [*];
19 composition composition2
20 [1] Bank (bank) -> (atms) ATM [*];
21 association association1
22 [1] Client (client) -> (bank) Bank [1];
23 association association2
24 [0..1] Client (client) -- (account) Account [1];
25 . . .
26 }

Listing 1. An excerpt from the class diagram representation of the Bank
metamodel

and 11). Primitive types of attributes inherit from the signature

Val (line 6).

In line 35, associations are defined as a set of binary

relations between associationEnd objects, defined in lines 25-

31. An associationEnd is defined by its class, type (e.g., com-
position, unidirectional or bidirectional) and its arity repre-

sented by its lower and upper bounds. Individual associations

are encoded using the buildAsso predicate (lines 40-47). For

example, line 58 shows the encoding of the composition

association between the classes Bank and Branch, along with

the relevant bounds.

Inheritance relationships (Extensions) are defined in line

36 as a set of binary relationships between classes. In other

words, 〈class1, class2〉 ∈ CD.extensions means that class1
inherits class2. For example, in line 64, we specify that

SavingsAccount inherits from Account.

Attributes are represented as a ternary relationship be-

tween classes, names and types (line 37). Individual at-

tributes are encoded using the buildFeature predicate (lines

48-50). For example, in line 67, the class Client is as-

799

Authorized licensed use limited to: Université de Montréal. Downloaded on January 03,2022 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

1 module Bank_CD

3 //Names of fields/associations in classes of the model
4 abstract sig FName {}
5 //Types of fields
6 abstract sig Val {}
7 //Parent of all classes
8 abstract sig Obj {}

10 //Names of fields/associations in cd
11 one sig name extends FName {}
12 one sig interestRate extends FName {}
13 //Types in model cd
14 one sig string extends Val {}
15 one sig double extends Val {}
16 //Classes in model cd
17 one sig Branch extends Obj {}
18 one sig ATM extends Obj {}
19 one sig Client extends Obj {}
20 one sig Transaction extends Obj {}
21 one sig Bank extends Obj {}
22 one sig Account extends Obj {}
23 one sig SavingsAccount extends Obj {}

25 sig associationEnd{
26 class: Obj,
27 type: String,
28 label: FName,
29 lowerBound: Int ,
30 upperBound: Int ,
31 }
32 //Metamodel representation
33 sig CD{
34 classes: set Obj,
35 associations: set associationEnd -> associationEnd,
36 extensions: classes -> classes,
37 features: Obj -> FName -> Val
38 }

40 pred buildAsso[cd:CD, obj1:Obj, label1:FName, _type:
↪→ String, obj2:Obj, label2:FName, l1:Int, u1:Int,
↪→ l2:Int, u2:Int]{

41 one ae1,ae2:associationEnd |{
42 ae1�=ae2
43 ae1.class =obj1 and ae1.type=_type and ae1.label=

↪→ label1 and ae1.lowerBound=l1 and ae1.
↪→ upperBound=u1

44 ae2.class =obj2 and ae2.type=_type and ae2.label=
↪→ label2 and ae2.lowerBound=l2 and ae2.
↪→ upperBound=u2

45 ae1->ae2 in cd.associations
46 }
47 }
48 pred buildFeature[cd:CD, c: Obj, fn: FName, v: Val]{
49 c->fn->v in cd.features
50 }

52 //Build the input metamodel
53 pred initialConditions[cd:CD]{
54 //Classes
55 cd.classes ={Branch + ATM + Client + Transaction +

↪→ Bank + Account + SavingsAccount + . . .}
56 //Associations
57 #cd.associations=8
58 buildAsso[cd,Bank,bank,"composition",Branch,branches

↪→ ,1,1,0,-1]
59 buildAsso[cd,Client,client,"unidirectional",Bank,bank

↪→ ,1,1,1,1]
60 buildAsso[cd,Client,client,"bidirectional",Account,

↪→ account,0,1,1,1]
61 . . .
62 //Extensions
63 #cd.extensions=5
64 cd.extensions ={SavingsAccount->Account +

↪→ CheckingAccount->Account + . . .}
65 //Features
66 #cd.features=5
67 buildFeature[cd, Client, name, string]
68 buildFeature[cd, SavingsAccount, interestRate, double

↪→]
69 . . .
70 }

Listing 2. Specification of the Bank metamodel in Alloy

Fig. 3. Refactoring solution generated using our approach for the bank
management system metamodel. Added elements are colored in purple and
deleted elements are in grey. Four refactorings were applied on the initial
version of the metamodel (Fig. 1): (1) pull-up feature interestRate to Account
class (2) remove dead metaclass Affiliate (3) transform the classification by
hierarchy to a classification by enumeration for the sub-classes of Employee,
a new enumeration were introduced EmployeeType (4) Remove the unidirec-
tional association between Client and Bank as it is implicitly contained in the
composition relation.

signed the attribute name:String. In Alloy, this means that

〈Client, name, string〉 ∈ CD.features.

A given input metamodel is defined using the predicate

initialConditions (lines 53-70). This predicate initializes all the

concrete elements of the input metamodel by encoding them

in the Alloy representation described above: classes (line 55),

associations (lines 57-61), inheritance relationships (lines 62-

64), and attributes (lines 65-69).

Alloy performs bounded scope analysis by checking the

encoded specification over a finite number of instances. To

visualize the specification in Listing 2, we run the predicate

initialConditions for a scope of 1 atom for the signature CD,

15 atoms for Obj, and 9 atoms for all other signatures.

C. Detection of bad smells

In this phase, we aim to identify bad smells, which can be

indicators of poor design decisions. Our prototype supports

the detection of the 4 bad smells described in Section II:

Dead metaclass, Classificiation by enumeration or by hier-

archy, Concrete abstract metaclass, and Duplicated features.

We encode each smell as a predicate in Alloy. For example,

Listing 3 shows our encoding of the Dead metaclass smell.

A “dead” metaclass is one that is disconnected from the rest

of the model, i.e., it does not have associations or inheritance

relations. Our encoding of the smell therefore has two parts:

in lines 6-12, we define how to check each individual class;

in lines 1-4, we define that for the smell to exist in a

800

Authorized licensed use limited to: Université de Montréal. Downloaded on January 03,2022 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

1 //check if there is a dead metaclass in the class
↪→ diagram

2 pred deadClass[cd: CD] {
3 some c: cd.classes |isDeadClass[cd, c]
4 }
5 //check if a metaclass is a ’dead metaclass’
6 pred isDeadClass[cd: CD, o:Obj] {
7 //check if the class o does not have associations
8 all x,y :associationEnd |(x->y in cd.associations)

↪→ implies (not (o in x.class) and (not (o in y.
↪→ class)))

9 //check if the class o does not have inheritance
↪→ relations

10 all p:cd.classes |not o->p in cd.extensions and not p
↪→ ->o in cd.extensions

11 }

Listing 3. Detection of dead metaclass in Alloy

Fig. 4. Refactoring process: An ordered finite state machine

metamodel, there must exist at least one class for which

the check succeeds. In case a smell exists, Alloy produces

an example that allows to localize it in the metamodel. For

example, running the predicate for the metamodel of the

running example, will result in the Alloy Analyzer adding to

the class Affiliate the annotation $deadClass_c allowing

us to localize the smell.

D. Quality-driven metamodel refactoring

Each design smell is associated with corresponding refac-

toring operations that remove it. Our prototype supports the

refactoring operations presented in Section II: removing a dead

metaclass, introducing an enumeration instead of a hierarchy,

making a concrete superclass abstract, pulling-up duplicated

features, and introducing superclassess for duplicated features.

If we detect some bad smells in the first phase of our

approach, in the second phase, we refactor the metamodel to

improve its quality. In our approach, the refactoring process

is driven by some quality criteria (i.e., extendibility, under-

standability, maintainability.) according to the interests of the

modeller.

We represent the refactoring process as an ordered finite

state machine, as shown in Fig. 4 and Fig. 5. Each state

represents a version of the metamodel, where the initial state is

the input metamodel and the last state is the output refactored

metamodel. Each transition represents the application of a

refactoring operation at the metamodel of the transition’s

source state which results in the metamodel of the transition’s

target state.

Our approach is to use a constraint solver to find a sequence

of transitions (i.e., refactoring operations) where the last state

will contain the refactored metamodel that satisfies the quality

constraints given as input. We will then output the resulting

Fig. 5. Flattened view of the refactoring process

1 open util/ordering[State]

3 sig State {
4 cd: one CD
5 }
6 fact {
7 all s: State, s’: s.next {
8 s’ in State implies
9 refactoringOperation [s.cd, s’.cd]

10 }}
11 pred refactorOperation[cd, cd’: CD] {
12 removeDeadClass[cd, cd’] or
13 pullUpField[cd, cd’] or
14 ExtractSuperClass[cd, cd’] or
15 . . .
16 }
17 pred removeDeadClass[cd, cd’: CD]{
18 one x: cd.classes |
19 isDeadClass[cd,x]
20 cd’.classes =cd.classes - x
21 cd’.associations =cd.associations
22 cd’.extensions =cd.extensions
23 all fn: FName, v: Val, c: Obj |
24 c=x implies
25 not (c->fn->v in cd’.features)
26 else c->fn->v in cd.features implies
27 c->fn->v in cd’.features
28 else not c->fn->v in cd’.features
29 }

Listing 4. Refactoring specification in Alloy

metamodel as a recommendation to the modeller. The modeller

can accept it or request additional recommendations, i.e., the

additional candidate solutions produced by the constraint

solver.

We show our prototype implementation with Alloy in List-

ing 4. It defines the refactoring process as an ordered finite

state machine, using the Alloy module util/ordering to

impose an ordering on the State signature. Defined in lines 3-

5, a State contains a single CD object, i.e., a metamodel class

diagram. In lines 7-19, we mandate that the metamodels of two

consecutive states should be related by a refactorOperation,

which can be any of the known refactorings. As an example,

we show the implementation of the removeDeadClass refactor-

ing in lines 21-33. It consists of removing the dead metaclass

from the metamodel in the next state (line 23), while also

removing its attributes (lines 27-33). All other associations

and inheritance relations are preserved (lines 24-26) in the

resulting metamodel.

Next, we encode the requirement that the quality of the

resulting metamodel should be improved with respect to the

input as additional quality constraints. In our Alloy proto-

type, we used three quality characteristics: maintainability,

understandability, and extendibility. Based on prior work on

software quality [22]–[24], we operationalize these quality

characteristics using the design metrics listed in Table I.

801

Authorized licensed use limited to: Université de Montréal. Downloaded on January 03,2022 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

TABLE I
DESIGN METRICS USED TO DEFINE QUALITY ATTRIBUTES

Metric Description

NC Number of classes
NA Number of attributes
NR Number of references
DITmax Maximum hierarchical level i.e., depth of the inheritance

tree
Fanoutmax Maximum Fanout, i.e., maximum number of referenced

classes by a class
PREDc Number of predecessors in the inheritance hierarchy of

a given class c
INHF Number of inherited features
NTF Total number of features

Genero and Piattini [22] define maintainability as the aver-

age of low level design metrics (Table I) as follows:

NC +NA+NR+DITmax + Fanoutmax

5
(1)

Lower values indicate better maintainability.

Sheldon and Chung [23] define understandability as the av-

erage number of predecessors in the hierarchy of inheritance:
∑NC

c=1 PREDc + 1

NC
(2)

Higher values indicate a more understandable design.

Arendt et al. [24] introduced the Attribute Inheritance
Factor (AIF) as a measure of extendibility, defined as:

INHF

NTF
(3)

Higher values of this factor indicate a higher degree of

extendibility.

We show our prototype Alloy implementation for computing

quality attributes in Listing 5. We first calculate the low

level design metrics from Table I (lines 1-32). These are

then used to compute a value for the three quality attributes:

understandability, extendibility and maintainability (lines 34-

43).

The goal of our approach is to improve the quality attributes

of the input metamodel. We encode the concept of quality im-

provement using the predicate QA in lines 46-53 of Listing 5.

We then use this predicate to require that the output metamodel

has better quality than the input (line 62).

Finally, we use the predicate smellsConstraint (lines 55-57)

to define a minimum number of smells that the solver should

try to remove. This is easily encoded as the minimum number

of State atoms that Alloy should try to instantiate.

In lines 59-64, we show an example execution setup using

the executionExample predicate. In this example, we require

that at least 4 smells are removed, while improving the

Extendibility and Maintainability.

Executing this example in the given scope (line 64) for

the running example results in Alloy producing some refac-

toring solutions that satisfy the specified constraints. Among

these solutions, it produces a refactored metamodel in four

Fig. 6. Initial version of the CRM metamodel

transitions, as shown in Fig. 3, corresponding to the fol-

lowing four refactoring operations: remove dead metaclass

Affiliate, pull-up duplicated feature interestRate, classification

by enumeration for the sub-classes of Employee and remove

the unidirectional association between Client and Bank. This

refactored metamodel can be presented as a recommendation

to the modeller. The Alloy Analyzer can also produce addi-

tional recommendations as additional instances.

The complete Alloy listing for this example is available

online1 for replication.

IV. ILLUSTRATIVE CASE STUDY

In this section, we illustrate the usefulness of our approach

through a case study on the Customer Relationship Manage-
ment (CRM) metamodel shown in Fig. 6. We perform a user

study to assess the effectiveness of our approach when consid-

ering two quality factors (extendibility and understandability)

in the refactoring process.

A. Research questions

To evaluate our approach, we compared the metamodel

version obtained by our approach (trade-off between smell

removal and quality factors) with two alternative approaches

as baselines: (a) the initial metamodel, and (b) the metamodel

obtained by applying the approach developed by Bettini et

al. [11]. This approach is designed to produce a metamodel

where all smells are removed, regardless of quality consider-

ations. We formulate two research questions:

• RQ1: How does our approach perform in practice
compared to the baseline alternatives with respect to
independent user assessment of understandability?

• RQ2: How does our approach perform in practice
compared to the baseline alternatives with respect to
independent user assessment of extendibility?

B. Setup

1) Studied metamodel: In our study, we used the CRM
metamodel shown in Fig. 6, which has a number of bad smells.

Specifically: (a) LocatedElement is a dead metaclass. (b)

InternalWorker and ExternalWorker are two classes

1https://github.com/OussamaSghaier/SAM2021/

802

Authorized licensed use limited to: Université de Montréal. Downloaded on January 03,2022 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

1 // number of classes
2 fun NC[cd: CD]: one Int {
3 {ans:Int |ans =#cd.classes}
4 }
5 // number of references
6 fun NR[cd: CD]: one Int {
7 {ans:Int |ans =#cd.associations}
8 }
9 // number of composition relations

10 fun NCR[cd: CD]: one Int {
11 {ans:Int |ans =#{l,r: associationEnd |l->r in
12 cd.associations and
13 (l.type ="composition" or
14 r.type ="composition")
15 }}}
16 // number of unidirectional relations
17 fun NUR[cd: CD]: one Int {
18 {ans:Int |ans =#{l,r: associationEnd |
19 l->r in cd.associations and
20 (l.type="unidirectional" or
21 r.type="unidirectional")
22 }}}
23 // number of attributes
24 fun NA[cd: CD]: one Int {
25 {ans:Int |ans =#cd.features}
26 }
27 // number of generalizations
28 fun NGenH[cd: CD]: one Int{
29 {ans:Int |ans =#cd.extensions}
30 }

32 . . .

34 fun Maintainability[cd: CD]: one Int{{
35 ans:Int |
36 ans=div[sum{NC[cd]+NA[cd]+NR[cd]+DITmax[cd]+

↪→ FANOUTmax[cd]},5]
37 }}

39 fun Understandability[cd: CD]: one Int{{
40 ans:Int |ans =div[int PRED[cd] + int 1 , NC[cd]]
41 }}

43 . . .

45 // Quality assurance predicate
46 pred QA[cd, cd’: CD, q: set String]{
47 "Maintainability" in q implies
48 gte[Maintainability[cd],Maintainability[cd’]]
49 "Understandability" in q implies
50 lte[Understandability[cd],Understandability[cd’]]
51 "Extendibility" in q implies
52 lte[Extendibility[cd],Extendibility[cd’]]
53 }
54 // predicate for the number of removed smells
55 pred smellsConstraint[threshold: Int]{
56 #State ≥int threshold + 1
57 }
58 // example of execution
59 pred executionExample{
60 initialConditions[first.cd]
61 smellsConstraint[4]
62 QA[first.cd,last.cd,{"Extendibility"+"Maintainability

↪→ "}]
63 }
64 run executionExample for 9 but 15 Obj

Listing 5. Excerpt from Alloy code for computing quality

Fig. 7. CRM metamodel with all smells removed

Fig. 8. CRM metamodel generated using our approach

that inherit Worker but do not add any new features. (c)

Name is a duplicated feature in many classes: Client, CRM,

Company, Worker. (d) There is a redundant unidirectional

relation between Client and CRM that is implicitly contained

in the composition relation.

We show the initial version of the CRM metamodel, that

includes all the smells in Fig. 6. Fig. 7 shows the CRM

metamodel with all smells removed, following the approach

by Bettini et al. [11]. Fig. 8 shows a solution generated using

our quality-driven approach where we focus on improving

understandability and extendibility while removing at least two

bad smells.

2) User study: The metamodels produced by our approach

are the result of a trade-off between (a) removing a maxi-

mum number of smells and (b) maintaining or improving the

values of a given set of quality attributes. The encoding of

quality constraints is done according to a theoretical quality

model based on published scientific literature, as described in

Section III. To assess in practice the quality of the produced

metamodel, we conducted a user study with nine participants

familiar with MDE concepts and metamodelling in particular.

We consider three versions of this metamodel: (1) “Initial”,

i.e., without smell removal, (2) “ALL”, i.e., with all smells

removed, and (3) “CS”, i.e., using our constraint-solving

803

Authorized licensed use limited to: Université de Montréal. Downloaded on January 03,2022 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

TABLE II
QUESTIONS USED IN THE USER STUDY

Quality attribute Question

Understandability
1/ Who are the users of the CRM system (A
Customer Relationship Management system allows
managing company’s relationships and interactions
with customers and potential customers.)?
2/ What is the profile information of each user?

Extendibility
1/ We want to include temporary workers to the
CRM metamodel. What are the necessary modifi-
cations?
2/ We want to extend the metamodel so that workers
could supply services to clients who are able to
book appointments with workers. An appointment
has a time and a description. What are the required
changes?

Version

CSInitialALL

Ti
m

e
(s

)

300

200

100

0

2

Fig. 9. Response time in terms of understandability

approach. We divided the participants into 3 groups of 3, and

assigned to each group a different metamodel version.

We designed two questions per quality attribute with differ-

ent levels of difficulty. For RQ1, we asked the participants to

answer the questions using information encoded in the meta-

model to evaluate their comprehension level of the metamodel.

For RQ2, we asked the participants, through questions, to

extend the metamodel by performing the necessary changes to

satisfy some given requirements. Table II shows the questions

used in this user study.

Each evaluation session was done as a 30 minute Zoom

meeting with one participant at a time. During a session, we

presented to each participant a version of the metamodel; then

we asked the questions. For each question, we recorded the

time the participant took to answer, as well as their response.

C. Results

RQ1: In Fig. 9 we show the time that participants took

to answer questions related to understandability. They took

less time to answer while using the metamodel generated

by our approach (CS) compared to the other versions. As a

baseline, the median of the time taken by participants to an-

swer understandability-related questions is 109 seconds for the

Initial, 95 seconds for ALL and 74 seconds for the CS variant

generated using our approach. There is also less dispersion in

Version

CSInitialALL

1,0

0,8

0,6

0,4

0,2

0,0

Recall
Precision

Fig. 10. Correctness of the results in terms of understandability

Version

CSInitialALL

Ti
m

e
(s

)

250

200

150

100

50

0

5

Fig. 11. Response time in terms of extendibility

the values of time for the CS case as the three participants have

close time values. An interesting observation is that removing

all smells resulted in more effort from the participants to

understand the metamodel, because of the addition of the

abstract class NameElement and the inheritance lookup to

perform by the participants.

We show the correctness results of the participants’ re-

sponses to understandability-related questions in Fig. 10. Par-

ticipants tended to answer correctly more often for the meta-

model generated with our approach (CS) (precision = 0.97
and recall = 0.93) compared to the ALL (precision = 0.85
and recall = 0.78) and Initial (precision = 0.73 and

recall = 0.62) metamodel variants. This is evident in the

better precision and recall in terms of median and the fact

that there is less variability in values.

Overall, participants had a higher comprehension level of

the CRM metamodel when shown the refactored version

produced using our approach, compared to other alternatives.

However, they had some difficulties answering correctly the

understandability-related questions on the initial metamodel

due to the presence of smells.

RQ2: We show time measurements for performing extendibil-

ity tasks in Fig. 11. Overall, participants took less time to

extend the CRM metamodel when using our version (CS)

804

Authorized licensed use limited to: Université de Montréal. Downloaded on January 03,2022 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

Version

CSInitialALL

1,0

0,8

0,6

0,4

0,2

0,0

Recall
Precision

Fig. 12. Correctness of the results in terms of extendibility

compared to the ALL and Initial versions. Participants took

92 seconds on performing extendibility tasks when using

the initial metamodel, 99 seconds for the ALL metamodel

variant and 72 seconds for the metamodel generated using

our approach.

We show the precision and recall on performing

extendibility-related tasks on the different versions of the

CRM metamodel in Fig. 10. Using the refactored metamodel

generated by our approach allows to improve the correctness

of performing extendibility tasks (precision = 1 and recall =
0.92) compared to other alternatives (precision = 0.77,

recall = 0.81 for Initial and precision = 0.80, recall = 0.63
for ALL). Removing all smells (i.e., ALL) has worsened the

extendibility of the CRM metamodel in terms of median,

compared to Initial version, but it reduced the variability of

the correctness measures.

Our approach was able to improve the time and correctness

(i.e., precision and recall) of performing extendibility and

understandability tasks, on the CRM metamodel, compared to

other variants (i.e., Initial and ALL).

D. Threats to validity

The case study presented here is not intended to rigorously

validate our approach, but to illustrate its efficiency on a con-

crete example. Still, the results obtained must be considered

in the light of some decisions that may limit their validity.

Construct validity involves the quality model (formulas)

used by our approach. The results obtained are dependent

on these quality formulas. Other, more sophisticated, quality

models may be used. Our approach can be adapted to support

such quality models as the involved quality factors can be

encoded as constraints.

An internal threat to the validity of the case study relates

to the knowledge variance between subjects, as we used a

Between-subjects design, i.e., each participant is assigned to

a unique version of the metamodel. To mitigate this, we tried

to balance the groups in terms of level of knowledge and

experience when assigning participants to metamodel versions.

Finally, an external threat to the validity concerns the

generalizability of our findings to other cases. To fully validate

our approach, we are designing a more comprehensive study

involving more subjects and a large sample of metamodels.

V. RELATED WORK

In the literature, many works have investigated the automa-

tion of model and metamodel refactoring. These approaches

are based on different techniques such as formal methods

(e.g., [14]), model transformations (e.g., [15]), or learning

process from preexisting examples (e.g., [25]).

The first family of work targets the refactoring by means

of smell detection and correction. A representative example is

EMF Refactor tool [26], [27]. It supports metrics reporting,

smells detection and resolution for models based on Eclipse

Modeling Framework (EMF) [28].

Other approaches consist of deriving endogenous and in-

place model transformations. Reimann et al. [29] present

a generic refactoring framework based on EMF to model

refactorings for different modelling and meta-modelling lan-

guages. These generic refactorings can be reused for different

languages only by providing a mapping. Based on the defined

mapping, a generic transformation is executed to restructure

the models. In [30], [31], the authors derive model transfor-

mations by analyzing user editing actions when refactoring

models.

Several approaches were proposed to learn model trans-

formations from examples for, among others, refactoring. In

[17], the authors use a search-based approach to generate the

best sequence of refactorings based on textual and structural

similarity with a set of provided examples. In [32], the authors

propose a process to learn complex model transformations by

considering three common requirements: element context and

state dependencies and complex value derivation. A similar

work was proposed in [16] that relies on genetic programming

to learn model transformation rules guided by the conformance

with the provided examples. Kessentini et al. [25] use a set

of transformation examples to derive a target model from a

source model. The authors explore different transformation

possibilities evaluated based on their conformance with the

examples at hand.

Related to our work, Gheyi et al. [14] present a constraint-

based approach to refactor models. The semantics of Unified

Modeling Language (UML) were defined as well-formedness

rules to guide the refactoring process for a set of connected

models. The authors check these well-formedness rules on

transformed models. If not satisfied, they solve the failed

constraints by computing additional model changes required

to have a valid and semantic-preserving refactoring transfor-

mation.

The above-mentioned research contributions do not consider

explicitly the quality as a main concern to define the refactor-

ing.

Bettini et al. [11] propose a quality-driven framework

for detecting and resolving metamodel smells. The authors

define static mapping between bad smells and quality attributes

805

Authorized licensed use limited to: Université de Montréal. Downloaded on January 03,2022 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

by associating each smell to the set of quality attributes it

affects. Based on quality requirements, the associated smells

are identified and removed using refactoring operations. In

this work, the quality is considered independently for each

smell. Conversely, in our work, we seek to reach a trade-off

between the quality constraints expressed by the developer and

the smell removal.

VI. CONCLUSION

We proposed a constraint solving approach to refactoring

metamodels. It is driven by the improvement of metamodel

quality while maximizing the number of removed smells. We

illustrated its effectiveness with a case study on the CRM
metamodel. The results show that our approach improves the

extendibility and understandability of the metamodel com-

pared to other alternatives.
Our Alloy prototype demonstrated the feasibility of using

a constraint solver to reason about quality improvement and

refactoring. However, encoding quality metrics as constraints

in the default relational first-order logic engine used by Alloy

is not efficient as it provides only rudimentary arithmetic

capabilities. In the future, we will investigate using recent

advances in combining Alloy with SMT-based reasoning [33].

We intend also to perform an extensive evaluation with more

metamodels, subjects and quality attributes. This would allow

us to confirm our findings on the studied case.

REFERENCES

[1] A. Hernández-López, R. Colomo-Palacios, and Á. Garcı́a-Crespo, “Pro-
ductivity in software engineering: A study of its meanings for practition-
ers: Understanding the concept under their standpoint,” in 7th Iberian
Conference on Information Systems and Technologies (CISTI 2012).
IEEE, 2012, pp. 1–6.

[2] B. Kitchenham and E. Mendes, “Software productivity measurement
using multiple size measures,” IEEE Transactions on Software Engi-
neering, vol. 30, no. 12, pp. 1023–1035, 2004.

[3] R. C. King, W. Xia, J. C. Quick, and V. Sethi, “Socialization and or-
ganizational outcomes of information technology professionals,” Career
Development International, 2005.

[4] A. Hernández-López, R. Colomo-Palacios, Á. Garcı́a-Crespo, and
F. Cabezas-Isla, “Software engineering productivity: Concepts, is-
sues and challenges,” International Journal of Information Technology
Project Management (IJITPM), vol. 2, no. 1, pp. 37–47, 2011.

[5] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software
engineering in practice,” Synthesis lectures on software engineering,
vol. 3, no. 1, pp. 1–207, 2017.

[6] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change-and
fault-proneness,” Empirical Software Engineering, vol. 17, no. 3, pp.
243–275, 2012.

[7] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, blob and spaghetti code,
on program comprehension,” in 2011 15Th european conference on
software maintenance and reengineering. IEEE, 2011, pp. 181–190.

[8] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell
relations on software maintainability: An empirical study,” in 2013 35th
International Conference on Software Engineering (ICSE). IEEE, 2013,
pp. 682–691.

[9] M. Mohamed, M. Romdhani, and K. Ghédira, “Classification of model
refactoring approaches,” Journal of Object Technology, vol. 8, no. 6, pp.
121–126, 2009.

[10] H. Mumtaz, M. Alshayeb, S. Mahmood, and M. Niazi, “A survey on uml
model smells detection techniques for software refactoring,” Journal of
Software: Evolution and Process, vol. 31, no. 3, p. e2154, 2019.

[11] L. Bettini, D. Di Ruscio, L. Iovino, and A. Pierantonio, “Quality-driven
detection and resolution of metamodel smells,” IEEE Access, vol. 7, pp.
16 364–16 376, 2019.

[12] B. Andreopoulos, “Satisficing the conflicting software qualities of main-
tainability and performance at the source code level.” in WER. Citeseer,
2004, pp. 176–188.

[13] N. B. Harrison and P. Avgeriou, “Leveraging architecture patterns to sat-
isfy quality attributes,” in European conference on software architecture.
Springer, 2007, pp. 263–270.

[14] R. Gheyi, T. Massoni, and P. Borba, “A rigorous approach for proving
model refactorings,” in Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, 2005, pp. 372–375.

[15] J. Zhang, Y. Lin, and J. Gray, “Generic and domain-specific model
refactoring using a model transformation engine,” in Model-driven
Software Development. Springer, 2005, pp. 199–217.

[16] C. e. Mokaddem, H. Sahraoui, and E. Syriani, “Recommending model
refactoring rules from refactoring examples,” in Proceedings of the
21th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, 2018, pp. 257–266.

[17] A. Ghannem, M. Kessentini, M. S. Hamdi, and G. El Boussaidi,
“Model refactoring by example: A multi-objective search based software
engineering approach,” Journal of Software: Evolution and Process,
vol. 30, no. 4, p. e1916, 2018.

[18] M. Strittmatter, G. Hinkel, M. Langhammer, R. Jung, and R. Heinrich,
“Challenges in the evolution of metamodels: Smells and anti-patterns of
a historically-grown metamodel,” 2016.

[19] S. K. Debray, W. Evans, R. Muth, and B. De Sutter, “Compiler
techniques for code compaction,” ACM Transactions on Programming
languages and Systems (TOPLAS), vol. 22, no. 2, pp. 378–415, 2000.

[20] D. Jackson, Software Abstractions: logic, language, and analysis. MIT
press, 2012.

[21] S. Maoz, J. O. Ringert, and B. Rumpe, “Cd2alloy: Class diagrams
analysis using alloy revisited,” in International Conference on Model
Driven Engineering Languages and Systems. Springer, 2011, pp. 592–
607.

[22] M. Genero and M. Piattini, “Empirical validation of measures for
class diagram structural complexity through controlled experiments,” in
Proceedings of the 2002 International Symposium on Empirical Software
Engineering. Citeseer, 2001.

[23] F. T. Sheldon and H. Chung, “Measuring the complexity of class
diagrams in reverse engineering,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 18, no. 5, pp. 333–350, 2006.

[24] T. Arendt, F. Mantz, and G. Taentzer, “Uml model quality assurance
techniques,” Philipps-Univ. Marburg, Marburg, Germany, Tech. Rep,
2009.

[25] M. Kessentini, H. Sahraoui, M. Boukadoum, and O. B. Omar, “Search-
based model transformation by example,” Software & Systems Modeling,
vol. 11, no. 2, pp. 209–226, 2012.

[26] T. Arendt and G. Taentzer, “Integration of smells and refactorings within
the eclipse modeling framework,” in Proceedings of the Fifth Workshop
on Refactoring Tools. ACM, 2012, pp. 8–15.

[27] ——, “A tool environment for quality assurance based on the eclipse
modeling framework,” Automated Software Engineering, vol. 20, no. 2,
pp. 141–184, 2013.

[28] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.

[29] J. Reimann, M. Seifert, and U. Aßmann, “Role-based generic model
refactoring,” in International Conference on Model Driven Engineering
Languages and Systems. Springer, 2010, pp. 78–92.

[30] Y. Sun, J. Gray, and J. White, “Mt-scribe: an end-user approach to auto-
mate software model evolution,” in 2011 33rd international conference
on software engineering (ICSE). IEEE, 2011, pp. 980–982.

[31] P. Broschy, P. Langer, M. Seidl, and M. Wimmer, “Towards end-
user adaptable model versioning: The by-example operation recorder,”
in 2009 ICSE Workshop on Comparison and Versioning of Software
Models. IEEE, 2009, pp. 55–60.

[32] I. Baki and H. Sahraoui, “Multi-step learning and adaptive search for
learning complex model transformations from examples,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), vol. 25,
no. 3, pp. 1–37, 2016.

[33] K. Tariq, “Linking alloy with smt-based finite model finding,” Master’s
thesis, University of Waterloo, 2021.

806

Authorized licensed use limited to: Université de Montréal. Downloaded on January 03,2022 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

