Fighting evil is not enough when refactoring metamodels:
promoting the good also matters

Oussama Ben Sghaier
University of Montreal
oussama.ben.sghaier@umontreal.ca

ABSTRACT

In model-driven engineering, metamodels are central artifacts that
allow to capture domain concepts and build domain-specific lan-
guages. However, bad design decisions, continuous changes, and
the evolution of requirements may introduce bad smells and de-
teriorate the quality of metamodels. Refactoring metamodels is a
complex task as it should be performed according to many conflict-
ing quality attributes while maximizing the removal of smells. In
this paper, we propose a generic automated approach based on a
multi-objective heuristic search to refactor metamodels. The pro-
cess aims at generating a set of refactoring recommendations with
various quality trade-offs from which the modeler can choose the
most appropriate for her context. We evaluate the efficiency of
our approach with a user-based experiment, on time to perform
understandability and extendibility tasks, as well as the correctness
of the task output. Our results show that, globally, considering
trade-offs between quality and smell removal is significantly better
than focusing on smell removal alone. The observed difference is
statistically significant for the extendibility but only partially for
the understandability.

KEYWORDS

model-driven engineering, software quality, refactoring, multi-objective

optimization, search-based software engineering.

ACM Reference Format:

Oussama Ben Sghaier, Houari Sahraoui, and Eugene Syriani. 2022. Fighting
evil is not enough when refactoring metamodels: promoting the good also
matters. In The 37th ACM/SIGAPP Symposium on Applied Computing (SAC
'22), April 25-29, 2022, Virtual Event, . ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3477314.3507053

1 INTRODUCTION

Metamodels are central to abstraction and automation in model-
driven engineering (MDE). They represent the structural essence
of models by defining domain concepts, their relations, and their
features. They are used in most MDE activities, such as language
engineering, model transformation, code generation, consistency,
and conformance validation [9].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SAC °22, April 25-29, 2022, Virtual Event,

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-8713-2/22/04...$15.00
https://doi.org/10.1145/3477314.3507053

Houari Sahraoui
University of Montreal
sahraouh@iro.umontreal.ca

Eugene Syriani
University of Montreal
syriani@iro.umontreal.ca

Given this high importance of metamodels, they should be de-
signed carefully by taking into account several quality factors such
as reusability, extendibility, and understandability [6, 21]. In prac-
tice, metamodels require several and continuous changes to satisfy
new requirements and other maintenance activities. However, these
modifications may hinder their quality by making them unneces-
sarily more complex, less understandable, or less flexible. Because
many other MDE artifacts depend on metamodels, this eventually
negatively affects productivity, and increases fault-proneness and
maintenance costs of the development [1, 20, 32].

Maintenance has always been a challenging task in software
engineering as it is expensive and effort consuming [16]. Meta-
models should be regularly refactored to improve their design and
maintain their consistency. Therefore, full or partial automation
of refactoring alleviates the burden on modelers. Metamodel refac-
toring consists of restructuring the design by introducing some
changes to its structure without altering its intrinsic semantics
[13]. One approach to refactoring consists of detecting smells and
correcting them using refactoring operations [24, 26].

Many approaches were proposed for metamodel and model refac-
toring. They are based on formal methods [15], model transforma-
tions [33], or a learning process from preexisting examples [14, 25].
These proposed methods use different techniques to detect refactor-
ing opportunities without worrying about the quality factor, which
is the main goal of refactoring. The refactoring operation should not
be performed haphazardly but, instead, be based on well-defined
objectives, such as improving some quality criteria.

Bettini et al. [8] presented a quality-driven framework for detect-
ing and resolving metamodel smells. They define a static mapping
between design smells and quality attributes. Then, refactoring a
metamodel consists of removing all the bad smells that have an im-
pact on the target quality attributes. Nevertheless, we believe that
removing all the design smells is not necessarily the best solution,
as it may not necessarily lead to the best values of quality attributes.
In fact, quality attributes are potentially conflicting [2, 17]. Improv-
ing one quality criterion could lead to the degradation of another.
For instance, introducing too many elements to a metamodel to
improve its flexibility and extendibility may harm its understand-
ability and increase the cost of maintenance. Thus, a refactoring
solution should find the best trade-off with respect to the target
quality attributes.

In this paper, we propose a generic and automated approach
based on multi-objective heuristic search to refactor metamodels.
Our approach aims at finding a compromise between the conflicting
objectives to improve the quality of the metamodel. It recommends
a set of non-dominated refactoring solutions with various quality
trade-offs. Then, the modeler can pick a solution according to her
context and preferences. We evaluate the efficiency of our approach

https://doi.org/10.1145/3477314.3507053
https://doi.org/10.1145/3477314.3507053

SAC 22, April 25-29, 2022, Virtual Event,

Branch ATM Client Transaction

name: EString

A Y A
0..1] client
[1..1] bank

[0..*] atms "[1--1]

<<Abstract>>
Account

—

[0..*] branches

Bank

% N .
< [0..*] transactions

[0..*] clients

K -y

|[1..*] ploy ingsAccount

interestRate: EDouble

RetirementAccount

interestRate: EDouble

A4

Employee CheckingAccount

interestRate: EDouble

name: EString

3
[1..1] checkingaccount

[0..1] loan
v
Loan
Affiliate

FullTi loy PartTi loy

Figure 1: Metamodel for bank management systems

using a user-based experiment. We measure the time to perform
tasks related to understandability and extendibility as well as the
correctness of the task output. The results show that our approach
outperforms other alternatives and generates relevant refactoring
solutions that improve the quality of the metamodel. The observed
difference is globally statistically significant considering trade-offs
between quality and smell removal. More specifically, the statistical
significance was complete for extendibility but partial for under-
standability.

The remainder of this paper is organized as follows. We introduce
a motivating example in Section 2. We then detail the proposed ap-
proach for metamodel refactoring. First, we explain the evaluation
framework of metamodels in Section 3. Then, we explain how we
perform the refactoring as an optimization problem in Section 4. In
Section 5, we report the evaluation results and we discuss different
threats related to our experiments in Section 6. Finally, we outline
the related work in Section 7 and conclude in Section 8.

2 MOTIVATING EXAMPLE

We present the design of a simplified metamodel for bank manage-
ment systems as a motivating example. As shown in Figure 1, Bank
is the central class that is composed of automated teller machines
(ATMs) and Branches. It employs FullTime or PartTime Employees. A
bank has Clients who hold different types of Accounts: Checking,
Savings or Retirement. An account logs a list of transactions. A
checking account can have a Loan attached to it. Finally, Affiliate
represents the employees’ affiliation. This metamodel contains
many types of design smells [29], which are the result of poor
design decisions. We briefly describe the following four smells.

O. Ben Sghaier et al.

Dead metaclass is a design smell identifying a class not related to
any other class in the metamodel, like Affiliate. This is analogous
to dead code which is defined as a fragment of code that is no longer
used [12]. This design smell may have a negative impact on the
quality of the metamodel because it reduces its understandability
and makes it more complex by introducing unusable and useless
elements in the metamodel. Refactoring this smell consists of simply
removing the class.

Classification by enumeration or by hierarchy is a design smell
that concerns cases where we should use enumeration instead of an
inheritance hierarchy of classes [29]. For instance, an Employee can
be classified as a FullTimeEmployee or PartTimeEmployee. Depending
on the use case, this could be considered as a design smell since the
two sub-metaclasses do not add any new features. In that case, it
could be more appropriate to represent the employment type as an
enumeration inside Employee with these two values.

Concrete abstract metaclass is a design smell where super-classes
are concrete instead of abstract. For instance, Employee should not be
instantiated because an employee must be one of the two subtypes.
To refactor this smell, we make the class abstract [8].

Duplicated features is another common smell, where the same
feature is duplicated in several classes [29]. For example, some of the
attributes are repeated in more than one class (e.g., name in Employee
and Client). This design smell can be resolved by applying a pull-up
attribute refactoring, if these classes have a common super-class
(e.g., interestRate); otherwise, we should create a super-class that
unifies the duplicated features (e.g., name).

Removing design smells is not a goal in itself, but aims at improv-
ing the quality of the metamodel. However, the quality attributes
of metamodels are generally conflicting [2, 17]: improving one
quality attribute may harm another one. For instance, improving
the maintainability and abstraction of a metamodel by extracting
several super-classes may adversely impact its understandability
and complexity. Thus, removing all the smells or defining a static
approach to remove smells is not necessarily the best solution, and
may deteriorate the quality of the metamodel. Therefore, refactor-
ing metamodels is a complex problem where we need to find a
compromise between conflicting quality factors.

3 EVALUATION OF THE METAMODEL
QUALITY

3.1 Overview

Our approach refactors metamodels to improve their quality through
the removal of design smells. Figure 2 outlines the proposed ap-
proach. In (1), we reuse the library proposed in [8] which imple-
ments the detection and refactoring of some design smells. In (2),
we implement a module to evaluate the metamodel at hand follow-
ing a specific quality model. This module defines the objectives
that will be used in the optimization process. These two blocks are
internally used by our multi-objective optimization algorithm, in
(3), to compute the objectives (i.e., quality attributes) and generate
the target solutions. Our approach outputs the best sequence of
refactorings that maximizes the quality of metamodel. Then, the
modeler can select any solution from the list of recommendations,
according to her context and preferences, and apply it to generate

Fighting evil is not enough when refactoring metamodels

Multi-objective optimization

Input metamodel O @
. 5o
| Smells detection
. Metamodel refactorin;
Quality model @ solutions ¢

Metamodel Quality

—_—
evaluation

Figure 2: Proposed approach

QualityModel

QualityProvider metamodel: EString

package: EString
path: EString

QualityMeasure

value: EDouble

X

QualityMetric QualityAttribute

: 1,5 """""""""" :

'
QualityParamter MetricWeight

ParameterWeight

1

Weight

weight: EDouble

Figure 3: Metamodel for quality evaluation

the refactored version of the metamodel. We detail the different
steps of our approach in what follows.

3.2 Promoting the quality of metamodels

We aim to generalize and automate our proposed approach to any
quality framework. We define a quality metamodel, as shown in
Figure 3. This metamodel is defined as a hierarchy of quality mea-
sures. It defines the quality of metamodels using three levels of
abstraction with mappings from high to lower levels. The quality
attributes are at the highest level, decomposed into quality param-
eters, in turn decomposed into quality metrics. Quality attributes
are high-level concerns, such as understandability, maintainability,
and extendibility. Although they are easy to interpret, they are not
trivial to measure.

Ma et al.[22] presented a framework to evaluate the quality of
metamodels. The provided quality model can be specified using
our metamodel (Figure 3). Ma et al.[22] expressed quality attributes
as a combination of lower-level metrics called quality parameters
(e.g., size, coupling, inheritance), in turn computed using quality
metrics such as number of classes, abstract classes, average depth
of inheritance hierarchies, etc. Quality metrics are computed di-
rectly from the metamodel. We rely on the recursive combination
of metrics and parameters, i.e., quality attributes, which are better
suited for modelers to interpret. The quality provider is responsible
for computing the different quality measures.

SAC ’22, April 25-29, 2022, Virtual Event,

Our approach is generic: it supports any quality model as long
as it conforms to the defined quality metamodel (Figure 3). In par-
ticular, this is the case of the quality model presented by Ma et
al.[22]. The authors define a set of quality metrics: average number
of abstractions (i.e., number of abstract meta-classes), number of
concrete classes, average number of associations, average number
of attributes per class, etc. They also define a mapping between
quality metrics and parameters. For instance, coupling is defined as
the sum of the average number of abstractions and the average num-
ber of associations. Finally, they define the quality attributes as a
weighted sum of the quality parameters. Without loss of generality,
this is the model we use in our experiments.

To evaluate the quality of a metamodel with respect to the de-
fined quality model (i.e., compute the values of quality attributes),
we used Edelta [7]. It is a textual domain-specific language (DSL)
for metamodel refactoring and migration. Listing 1 shows a code
snippet from our evaluation module. It computes two quality met-
rics: number of abstract classes and number of concrete classes. It
is a general, reusable and extensible module that implements the
different quality measures.

1 def computeNAC(EPackage p){

2 return p.allEClasses.iterator.filter[c | c.abstract].size
)

+ def computeNCC(EPackage p){

5 return p.allEClasses.iterator.filter[c | !c.abstract].size

6}
Listing 1: Code snippet for metamodel quality evaluation

3.3 Design smell detection and refactoring

Design smells are structures in the design that indicate violations
of fundamental design principles and negatively impacting design
quality [31]. We used the smell detection library provided in [8]. It
provides an implementation for detecting five metamodel smells:
Duplicated features, Dead metaclass, Redundant container relation,
Classification by enumeration or by hierarchy and Concrete abstract
class (c.f. Section 2). Our approach is based on smell detection
and correction. To remove these design smells, we also use the
weaving model defined in [8]. It matches every bad smell with the
corresponding refactoring operation that removes it.

4 SEARCH-BASED METAMODEL
REFACTORING

4.1 Multi-objective optimization

The process of simultaneously optimizing a set of objective func-
tions is called multi-objective optimization (MOO) or vector opti-
mization [23]. It consists of the optimization of two or more con-
flicting objectives. Therefore, there is not a single solution that
optimizes all the objectives, but rather, we can have a set of Pareto-
optimal solutions [11]. A solution is called non-dominated or Pareto-
optimal if there is no other solution that is better in all the objectives.
These solutions are indiscernible and are all considered as good
solutions.

Non-dominated Sorting Genetic Algorithm II (NSGA-II), which
is used in this work, is a MOO evolutionary algorithm that is com-
putationally fast. It is based on sorting the population on multiple
fronts using a non-dominated rapid sorting approach. It also uses

SAC 22, April 25-29, 2022, Virtual Event,

genetic operators (crossover and mutation) to generate new solu-
tions and crowding distance to sort individuals. NSGA-II finds a
representative set of non-dominated solutions that constitute a
compromise between the predefined objectives.

In our approach, we define the problem as a MOO process where
the goal is to find the best sequence of refactorings (i.e., the list of
bad smells to be removed since each smell is associated with the
refactoring operation that removes it) that optimizes our conflicting
quality attributes objectives.

If the search space is small, i.e., small metamodel with few de-
tected smells, we can just use an exhaustive search that consists
of exploring the whole search space and testing all possible combi-
nations then selecting the best ones. In this case, we are sure that
the Pareto front we get is the globally optimal one. However, when
it comes to large search space, it is difficult, if not impossible, to
perform an exhaustive search considering the very high number
of solutions to explore. In this case, a heuristic search reduces the
search space by exploring fewer solutions and can find near-optimal
solutions. More specifically, we use NSGA-II to explore the search
space and find good refactoring solutions that maximize the quality
of the input metamodel.

We first evaluate the size of the search space depending on the
problem parameters, i.e., the size of the metamodel and the number
of detected smells and we select the appropriate search method
depending on the search space size. If an exhaustive search is doable
in a reasonable time frame, then, we use it. Otherwise, we use the
multi-objective genetic algorithm NSGA-II to wisely explore the
space of potential solutions.

4.2 Problem formulation

We define the problem by expressing the objectives and the struc-
ture of target solutions. The quality attributes represent our ob-
jectives that we aim to maximize in our work. Additionally, we
aim to maximize the removal of bad smells. Using many objectives
expands the number of output solutions. Thus, we enable the user
to specify the quality criteria she is interested in among five quality
attributes: Reusability, Understandability, Functionality, Extendibil-
ity, and Well-structured. Taking user preferences into consideration
allows us to reduce the number of suggestions and recommend
relevant user-specific solutions.

We denote SM the set of all bad smells and RE the set of all
refactorings. We define the mapping refact : SM — RE such that
Vsm € SM,3re € RE : refact(sm) = re. A solution is represented
as a vector S; = {sm; € SM} of bad smells to be removed. Each
bad smell sm; € S; is associated with the corresponding refactoring
re; = refact(sm;) that removes it. Therefore, we can also consider
our solution as a set of refactorings. The solutions might have
different sizes where each solution is a subset of the complete list
of smells initially detected from the input metamodel.

4.3 Generating new refactoring solutions

NSGA-II uses some genetic operators to combine solutions from
the current iteration and generate new solutions. To this end, we de-
fine two operators: (i) crossover to produce new refactoring sets by

O. Ben Sghaier et al.

1
Smell-3 | Smell-2 ’ Smell-4 l Smell-6 I Smell-8 | Smell-5 I Smell-9 I Smell-1 |
1

Parent 1

4 Cut point

Parent 2 | Smell-6 I Smell-1 ’ Smell-5 I Smell-4 I Smell-7 | Smell-8 l Smell-3 I

Child 1 Smell-3 I Smell-2 [Smell-4 I Smell-6 Smell-7 | Smell-8 I

Child 2 Smell-6 | Smell-1 ’ Smell-5 l Smell-4 I Smell-8 | Smell-9 I

Figure 4: Adapted single-point crossover operator

Parent l Smell-3 | Smell-2 l Smell-4 | Smell-6 ‘ Smell-8 l Smell-5 | Smell-9 l Smell-1 |

Children ‘ Smell-3 | Smell-2 ‘ Smell-4 | Smell-6 ‘ Smell-5 ‘ Smell-9 | Smell-1 ‘

Figure 5: Adapted mutation operator

exchanging subsets between two selected refactoring solutions and
(if) mutation that modifies the refactoring set of a given solution.

4.3.1 Crossover. We use single-point crossover and adapt it to our
specific context. It consists of taking two refactoring solutions from
the current population (parents), randomly choosing a cut point in
the associated refactoring sets, then generating a new refactoring
solution (child) that combines the left-side refactoring subset of
the first solution with the right-side subset of the second solution
relatively to this point. A second refactoring solution (child) is
created by combining the remaining subsets.

For our specific problem, one problem that may occur is having a
new child solution with duplicate instances of the same bad smells.
This case occurs when the left side of the first parent contains
the same bad smell instance as the right side of the second parent.
To overcome this problem, we adapt the crossover operator by
removing duplicates in the new child if detected. Figure 4 illustrates
an example of crossover operation applied on two parent refactoring
solutions. We form one child refactoring solution by combining the
subsets of the two parent solutions as described previously. Then,
we check for duplicates. Since the same bad smell instance, smell-
3, appears twice, we only retain the first instance. Similarly, the
second refactoring solution produced consists only of one instance
of the smells combined from the parents.

4.3.2 Mutation. For each of the bad smells in the solution, we
decide with a certain probability (i.e., mutation rate) whether to
delete or not the bad smell instance. This means that the produced
refactoring solution is composed of a subset of the parent smells
instances. Figure 5 shows an example where the application of the
mutation operator on the parent solution led to removing Smell-8
and keeping other elements.

Since mutation removes smells, we may end up with a smell that
will never appear in a solution of the Pareto front. We mitigate
this risk by diversifying our initial population with different smells.
Moreover, in NSGA-II, the best half of the solutions is systematically
added to the next generation of solutions. This significantly lowers
the risk of not encountering a smell in the Pareto.

Fighting evil is not enough when refactoring metamodels

Smells Duplicated Dead metaclass Duplicated Concrete-abstract
feature name Entity feature name class Person

¢ ¢ ! !

Extract super class Remove dead Extract super class Make class
metaclass abstract

Refactorings

Figure 6: Example of mapping design smells to their corre-
sponding refactoring operations

4.4 Evaluating refactoring solutions

We consider a solution to be valid if it is applicable: all refac-
torings corresponding to the bad smells in the solution are not
conflicting. The application of one refactoring operation may in-
validate another one. For instance, extracting a duplicate feature
from a dead metaclass, that is already deleted, will produce an error
when applying the solution. We overcome this problem using a
trial-and-error approach. We apply the solution and we check if
it is valid. If it is invalid, we eliminate it from the list of solutions.
In the optimization phase, we only retain valid solutions that are
applicable to avoid misleading the user.

A solution is a set of smell instances to be removed. To evaluate a
solution, we translate it to a list of corresponding refactorings (see
for example Figure 6). This is done by replacing each smell with its
corresponding refactoring operation that allows to remove it. Then,
we apply these refactorings on the input metamodel to generate
the refactored metamodel. Finally, we evaluate the quality of the
resulting metamodel by computing its quality attributes using our
evaluation framework (Section 3.2).

We define two objective functions to optimize for the MOO in
NSGA-IL They take as input the metamodel m € M (where M is
the set of all models) and a solution S; as defined in Section 4.2.
One objective is to maximize all the quality attribute values of the
metamodel: max{qual(m, qa),Vqa € QA} where qual : M X QA —
R is computed as described in Section 3. The second objective is
to minimize the number of smells remaining in the metamodel:
min{|S;| : sm; € smell(m)}, where smell : M — P(SM) returns
all the bad design smells in the metamodel. A solution dominates
another if it has better objective values (better quality values and
more smells to remove). Otherwise, they are non-dominated. This
means that they are indiscernible since each solution has better
values for some of the objectives.

4.5 Metamodel refactoring recommendation

As mentioned earlier, NSGA-II produces a Pareto front of non-
dominated solutions that are equally good since each solution im-
proves some objectives (i.e., quality attributes) with respect to other
solutions. Therefore, it is up to the user to select the most appro-
priate solution that suits her preferences and her specific context.
Table 1 shows an example of two non-dominated solutions exe-
cuted on one of the metamodels used in our validation (Customer-
Relationship management — CRM). We cannot discriminate be-
tween these two solutions since each of them has better values
for some of the objectives. Solution 1 has better values compared
to Solution 2 in Understandability and Well-structured objectives,
but worse values in Reusability, Functionality, and Extendibility.

SAC ’22, April 25-29, 2022, Virtual Event,

Table 1: Example of non-dominated solutions: objective val-
ues

Solution 1 Solution 2

Reusability 6.2 6.5
Understandability 3.8 3.1
Functionality 4.8 4.9
Extendibility 2.1 2.6
Well-structured 3.9 3

Therefore, choosing the appropriate solution depends on which
quality factors the user favors according to her specific context.

We give further visual assistance to the user by presenting charts
reporting the values of each quality attribute.

5 VALIDATION

We conducted a set of experiments to evaluate our approach quan-
titatively and qualitatively. In this section, we present our research
questions followed by the experimental setting. Then, we present
and discuss the results.

5.1 Research questions
To validate our approach, we define four main research questions:

o RQO: Are the results of our approach attributable to the search
strategy or to the number of explored solutions? This is a
sanity check to ensure that our approach does not find the
best solutions by chance, but because of the method used.

o RQ1: Given a quality model, does our search-based refactoring
approach improve the quality of the metamodel better than
not applying any refactoring or removing all design smells?
We compare the quality of the metamodels resulting from
three methods: the initial version of the metamodel with all
the design smells, the refactored metamodel with all smells
removed applying the approach in [8], and applying the
refactorings with our search-based approach.

e RQ2: How does our approach perform in practice compared to
other alternatives with respect to independent user assessment
of understandability? We assess which approach specifically
improves the understandability quality attribute of given
metamodels in practice. Thus, we rely on a user study to
evaluate the metamodels resulting from our approach, those
refactored using the approach in [8], and the initial meta-
models.

o RQ3: How does our approach perform in practice compared to
other alternatives with respect to independent user assessment
of extendibility? This research question is similar to the pre-
vious one, but we focus on the extendibility quality attribute
instead.

5.2 Experimental setting

To address the different research questions, we conducted two sets
of experiments: an empirical study based on a dataset of metamodels
for RQO and RQ1, and a user study for RQ2 and RQ3.

5.2.1 Empirical study based on the quality model.

SAC 22, April 25-29, 2022, Virtual Event,

To answer RQO and RQ1, we use a dataset of 10 metamodels
selected from an online Ecore dataset!. Table 2 presents the charac-
teristics of each metamodel: number of classes in the metamodel,
total number of attributes, number of associations, number of in-
heritance relations, and the number of bad design smells detected.

Table 2: Characteristics of the metamodels

Metamodel Classes Attr. Assoc. Inherit. Smells
CRM 11 6 8 5 6
DBLP 17 51 17 8 13
BibTeX 29 55 4 48 17
Ant 51 95 28 40 25
Maven 8 28 6 2 3
jPQL 49 24 42 35 20
HTML 59 98 14 42 38
SQL 92 45 119 42 42
WikiML 29 10 22 24 12
MongoSQL 23 21 6 18 8

During the experiments, we used the quality model presented
in [22]. Based on some recommended configurations in the litera-
ture [18], we set the hyper-parameters of NSGA-II for the popula-
tion size to 50, the crossover and mutation probabilities to 0.8, and
the maximum number of generations to 400.

To answer RQO, we implemented a random search algorithm
with a uniform distribution. It is a direct optimization method that
does not require a search strategy to generate solutions. We use a
uniform distribution to build our solution from the list of detected
design smells. The probability of a smell to be removed from an
input metamodel is 0.5. We run a number of fixed iterations. For
each iteration, we build a new random solution and only keep the
best solution that optimizes the objective function. We compare the
results for the same number of generated solutions using random
search and our search-based approach. This allows us to prove
whether the achieved results are attributable to the search strategy
or to the number of explored solutions.

To answer RQ1, we consider the initial metamodel with all the
design smells (Initial), the refactored metamodel with all smells
removed by applying the approach in [8] (All), and the metamodel
refactored by applying the refactorings with our search-based ap-
proach (MOO). For each metamodel in Table 2, we compare the three
versions with respect to the same quality model [22] by evaluating
the quality attributes of each solution.

5.2.2 User study targetting specific quality attributes.

The results obtained to answer the previous research questions
highly depend on the quality model provided, since it is what guides
the optimization process in MOO. This may introduce a bias in the
evaluation results. To assess a neutral and independent evaluation
from the quality model, we conducted a user study where we asked
participants to perform tasks related to specific quality attributes.
We use the results of the user study to answer RQ2 and RQ3 from
a practical perspective.

Thttps://doi.org/10.5281/zenodo.2585456

O. Ben Sghaier et al.

Unlike the quality-model based study, we focus on improving
two specific quality attributes, namely understandability and ex-
tendibility. We selected three metamodels: a bank management
system, an online store system estore, and a customer-relation man-
agement system CRM (Table 2). For each metamodel, we consider
the three versions: Initial, All, and MOO produced using the meth-
ods above. For MOO, we employ the same configuration of hyper-
parameters as in the first study, but optimize only three objectives:
understandability, extendibility, and maximizing the number of
removed smells. Then, we randomly select a solution from the list
of recommendations.

To enroll participants in the study, we sent a call for volunteers
requiring knowledge in UML class diagrams and MDE. We followed
a convenience sampling method, by sending invitations to research
groups in our network. Nine participants responded positively, who
are researchers (Ph.D. students, postodoctoral fellows, or professors)
with good expertise in metamodeling. We designed the experiment
as shown in Table 3. We divided the participants into three groups
of three, such that each group is treated with exactly one metamodel
per version.

Table 3: Design of the user study

Metamodel / Version Initial All MOO

bank Group1 Group2 Group 3
estore Group 2 Group3 Group1
CRM Group3 Group1l Group 2

For each metamodel, we designed two questions per quality
attribute with different levels of difficulty. For understandability
(RQ2), we asked participants about some information encoded in
the metamodel to evaluate the level of comprehension of a given
version of the metamodel. For example, an easy question we asked
for the bank metamodel (Figure 1 shows the Initial version) is
“What information does the bank have on saving accounts?”. For
extendibility (RQ3), we asked participants to verbally explain the
changes they would perform to extend the metamodel with a new
requirement. For example, a difficult question we asked for the estore
metamodel is “We want to extend the metamodel so that workers
could supply services to clients who are able to book appointments
with workers. An appointment has a time and a description. What are
the required changes?”. We collected the answers by taking notes.
We kept these notes anonymous by assigning the answers to IDs
instead of participants’ names.

We allotted each participant 15 minutes in a one-on-one Zoom
session. Through screensharing, we presented a version of a meta-
model and the questions corresponding to that metamodel. We
measured the time they took to answer a question (in seconds) and
we recorded their responses to evaluate their correctness. All the
material for this experiment is available online? for replication.

5.3 Results

5.3.1 Results for RQ0. We executed random search and our ap-
proach on the dataset of metamodels (Table 2). We compared the

2https://github.com/OussamaSghaier/SAC2022

https://doi.org/10.5281/zenodo.2585456
https://github.com/OussamaSghaier/SAC2022

Fighting evil is not enough when refactoring metamodels

non-dominated solutions generated by our approach to the best
solution produced by random search algorithm. Figure 7 shows the
results of our experiments on the CRM metamodel. We randomly
selected two solutions (MOO-1 and MOO-2) from the recommended
solutions generated by our approach. We see that the MOO solu-
tions dominate the solution generated by random search in all the
objectives. Our results show that our approach produces solutions
that dominate the solution generated by random search in all the
objectives for all metamodels. Therefore, we conclude that the ob-
tained results are attributable to the search strategy and not to the
number of explored solutions.

5.3.2 Results for RQ1. We obtain similar results when compar-
ing our search-based approach to the solution produced by the ap-
proach presented in [8], as shown in Figure 7. Our approach results
in better quality scores than the previous approach. Therefore, we
conclude that removing all design smells does not always guarantee
an improvement of overall quality. Instead, targetting refactoring
operations that remove specific design smells yields a better meta-
model quality. Interestingly, we note that removing all design smells
may even worsen some quality attributes, in particular extendibility.
For example, we observe that the Extendibility(Initial) > Extendibi-
lity(ALL) for the CRM metamodel.

Value of quality attribute
w a o o

AR NN

A Y
V77777 A

A\
777
AN\
V72222
V772

Y
NN\

Well-structured

o
o)
=
@
4
=4
=

<

Understandibility Functionality Extendibility

MOO-1 m MOO-2 #Initial mALL »Random Search

Figure 7: Comparison of the objectives values (i.e., quality
attributes) for the best solution generated by the different
methods on the CRM metamodel

5.3.3 Results for RQ2. For each question during the user study,
we calculated the precision and recall of the participants’ answers
we collected as follows:

relevant elements included in answer

precision = - -
elements included in answer

relevant elements included in answer

recall =
relevant elements

We verified the normality of the results (i.e., time, precision, and
recall) using Kolmogorov-Smirnov test. We obtained a significant
p — value < 0.001. This means that there is a significant difference
between the distribution of our results and the normal distribution.
Therefore, we performed Mann-Whitney test on the time and score
metrics we collected for the understandability questions. This is
a non-parametric test of the null hypothesis that the observed

SAC ’22, April 25-29, 2022, Virtual Event,

differences between two independent variables were obtained by
chance (i.e., null hypothesis) or if they are statistically significant
(p — value < 0.05).

Table 4 describes the statistical results related to understandabil-
ity of the different approaches. The statistically significant results
are displayed in bold, meaning they are generalizable beyond our
sample within similar settings. Time differences are significant
when MOO is compared with the other approaches, but not signifi-
cant for score precision and recall when comparing our approach
with the one in [8].

Table 4: Pairwise statistical significance of time, precision
and recall between the different versions of the metamodels

Mann Whitney p-value

Quality attribute Metamodel Time Precision Recall
Initial - All 0.424 0.719 0.462

Understandability ~ Initial - MOO 0.003 0.239 0.111
All - MOO 0.009 0.079 0.424
Initial - All 0.372 0.767 0.563

Extendibility Initial - MOO 0.010 0.001 0.016
All - MOO 0.000 0.000 0.000

Figure 8 presents the precision and recall of the results for each
answer related to understandability using the different approaches.
It is clear that our approach provides better values of precision and
recall. This is true both in terms of centrality and dispersion. As a
baseline, more than 85% of the understandability-related responses
were correct with respect to the initial metamodel. However, there
is a lot of variability among the participants, some are clearly not
able to correctly answer understandability questions. This is due
to the large number of bad smells present in the initial metamodel.
Removing all bad smells yields a perfect precision and improves the
recall. However, there are still low values. This is explained because
removing all the smells may increase the size of the metamodel,
making it less understandable. In contrast, when presenting the
metamodels produced by our approach, almost all participants
scored perfectly. Furthermore, all values are contained in the 78%
to 100% interval. This means that the understandability by the
developers is uniform and better when metamodels are refactored
using MOO.

The time measured to answer understandability questions cor-
roborates these results. As depicted in Figure 9, it takes the par-
ticipants significantly less time to answer the questions correctly.
Interestingly, in general, it took them more time to understand
metamodels where all smells are removed. The All approach intro-
duces many new elements in the metamodel, which makes it more
complex and increases the time required to understand it.

Figure 10 depicts an excerpt from the different versions of Bank
Management System metamodel (i.e., initial metamodel, metamodel
generated using ALL approach and metamodel generated using our
MOO approach). The initial version of the metamodel contains some
instances of bad smells: duplicated feature (e.g., id, interestRate,
amount), dead metaclass (e.g., Affiliate). The All approach removes
all these bad smells by applying the corresponding refactoring op-
erations: pull-up-feature(interestRate), remove-dead-metaclass(

SAC 22, April 25-29, 2022, Virtual Event,

W Precision

10 I [| E | Recall

27
0,0 *

Initial ALL MOO

Version

Figure 8: Precision and recall of the results in terms of un-
derstandability

Affiliate), create-super-metaclass(id), create-super-metaclass(
amount). This leads to a more complex design by introducing several
meta-classes with few features compared to our MOO approach
that removes a subset of the detected smells. This harms signifi-
cantly the comprehension of the metamodel and increases the time
required to understand it.

300

200

Time (s)

Initial ALL MOO

Version

Figure 9: Time measurements in terms of understandability

5.3.4 Results for RQ3. In terms of extendibility, Table 4 shows
that the results obtained are significant for time, score precision
and recall when MOO is compared with the other two approaches.
From Figure 11, we can see that our approach outperforms the other
alternatives as it was the case for understandability. Furthermore,
we note a high dispersion for the Initial and All metamodels. As
a baseline, the participants had significant difficulties correctly
extending the Initial metamodel. However, removing all smells from
a metamodel does not help in extending it neither. The amount of
changes resulting from removing all smells makes the metamodel
even more complex to extend. For example, we noted that some
participants forgot to include key elements in their responses.

O. Ben Sghaier et al.

With no surprise, the participants required less time to answer
the extendibility questions when provided a metamodel produced
by MOO compared to the other two (see Figure 12).

We investigated the correlation between the time and correctness
of the responses by measuring the Pearson correlation coefficient.
Table 5 shows that the time and the correctness scores (i.e., precision
and recall) are inversely correlated. This correlation is weak (=~ —0.3)
but statistically significant (<= 0.01). This means that participants
who took more time to answer questions were more likely to give
wrong answers. However, this relationship between the correctness
of the responses and the time allotted by the participants to answer
questions is minimal. We believe that correctness depends more on
the quality of the design.

Table 5: Pearson correlation between Time and Precision /
Recall

Precision Recall

Pearson correlation —0.372 —0.305

Ti
tme Significance 0 0.01

The main outcome of this user study is that our approach to
refactoring metamodels significantly improves the comprehension
and the extension of metamodels.

6 THREATS TO VALIDITY

The evaluation of our approach revealed compelling evidence that
explicitly addressing quality concerns in metamodel refactoring is
more beneficial than just removing all smells. These results must,
however, be read in the context of our evaluation setup. In this
section, we discuss different threats that may limit the validity of
the study presented in Section 5.

From the internal validity perspective, we identified two threats,
maturation and confounding. Firstly, we assigned the metamod-
els/refactoring approach in a way that no participant will see the
same meta-model twice. Moreover, the metamodels were presented
in a random order to the participants to avoid maturation threats
caused by learning, fatigue, or boredom, in addition to limit the
duration of the evaluation sessions. For the confounding threat, we
ensured that the participants have the sufficient knowledge in meta-
modeling and assigned them randomly to the groups. Furthermore,
as each participant experimented with all the refactoring options,
we do believe that the results are attributable to the refactoring
approach and not to the knowledge of participants or their intrinsic
ability to perform the tasks quickly.

For the external validity, we identified some threats. The first
relates to the metamodels used in the evaluation of our approach.
These have average sizes. Although, bigger metamodels would be
more representative, we decided to avoid them to limit the effort
of the participants. Also, our choice of metamodels with different
characteristics may help mitigating this threat. The second threat
concerns the choice of the quality model, used to evaluate the
different approaches in the first experiments. This is part of our
optimization process. This makes the results of the first experiment
biased towards our approach. Therefore, we conducted user-based

Fighting evil is not enough when refactoring metamodels

Client T

name: EString o cton

9
amount: EDouble

id: ELong
[0..1] client
[1..1] account

Account

[0..*] transactions

[[=ow | [Fev |
| |

| interestRate: EDouble |
CheckingAccount

interestRate: EDouble

[1..1] checkingaccount

| interestRate: EDouble |

[0..1] loan

IdEntity

id: ELong

Client

Account

Transaction

name: EString

[1..1] account

uap [170]

interestRate: EDouble

————

0..¥] transactions

[[1

|
| | l

CheckingAccount

[1..1] checkingaccount

[0..1] loan

—

Loan
Loan

amountEntity

amount: EDouble

amount: EDouble

SAC ’22, April 25-29, 2022, Virtual Event,

Client T

name: EString

id: ELong ia srong

amount: EDouble

[0..1] client
[1..1] account

Account

interestRate: EDouble

[0..*] transactions

==
|

CheckingAccount

[1..1] checkingaccount

[0..1] loan

Loan

amount: EDouble

Initial

ALL

MOO

Figure 10: An excerpt of Bank Management System metamodel: different versions of the metamodel (i.e., initial metamodel,
metamodel generated using the ALL approach and metamodel generated using our MOO approach)

Precision
H Recall

10
—‘7 40 38
)

J

Initial ALL MOO

Version

Figure 11: Precision and recall of the results in terms of ex-
tendibility

Time (s)
=
.

o *,

|

Il I e

MOO

Initial ALL

Version

Figure 12: Time measurements in terms of extendibility

experiments to evaluate the effectiveness of our approach and its
performance independently from the used quality model. Another
threat to external validity refers to the size of the subjects involved.
We mitigated this threat by assessing the statistical significance of
the results rather than just reporting the sample results. Still, it is
necessary to replicate this study with more subjects and metamodel
sets, to draw final conclusions.

For the construction validity, we prevented the mono-method
bias by using three measures of the performance of the respective
refactoring alternatives: time, precision and recall.

7 RELATED WORK

In the literature, many approaches have investigated the automation
of model or metamodel refactoring using formal methods (e.g., [15]),
model transformations (e.g., [33]), learning process from preexisting
examples (e.g., [19]), etc..

Several approaches were proposed to learn model transforma-
tions from examples. In [14], the authors use a search-based ap-
proach to generate the best sequence of refactorings based on tex-
tual and structural similarity with a set of provided examples. In [5],
the authors propose a process to learn complex model transforma-
tions by considering three common requirements: element context
and state dependencies and complex value derivation. Kessentini et
al.[19] use a set of transformation examples to derive a target model
from a source model. The authors explore different transformation
possibilities evaluated based on their conformance with the exam-
ples at hand. A similar work was proposed in [25] that relies on
genetic programming to learn model transformation rules guided
by the conformance with the provided examples.

EMF Refactor tool was introduced in [3, 4]. It supports metrics
reporting, smells detection and resolution for models based on
Eclipse Modeling Framework (EMF) [28]. Other approaches con-
sist of deriving endogenous and in-place model transformations.
Reimann et al.[27] present a generic refactoring framework based

SAC 22, April 25-29, 2022, Virtual Event,

on EMF to model refactorings for different modeling and meta-
modeling languages. These generic refactorings can be reused for
different languages only by providing a mapping. Based on the de-
fined mapping, a generic transformation is executed to restructure
the models. In [10, 30], the authors derive model transformations
by analyzing user editing actions when refactoring models.

In [15], the authors present a constraint-based approach to refac-
tor models. The semantics of Unified Modeling Language (UML)
were defined as well-formedness rules (WFRs) to guide the refactor-
ing process for a set of connected models. The authors check these
WFRs on transformed models. If not satisfied, they solve the failed
constraints by computing additional model changes required to
have a valid and semantic-preserving refactoring transformation.

Bettini et al.[8] propose a quality-driven framework for detecting
and resolving metamodel smells. The authors define static map-
ping between bad smells and quality attributes by associating each
smell to the set of quality attributes it affects. Based on quality re-
quirements, the associated smells are identified and removed using
refactoring operations.

Most of the cited works do not rely on using the conflicting
quality factors to guide the model refactoring process, yet its main
goal is improving the design quality.

8 CONCLUSION

In this paper, we presented an approach to recommend refactor-
ings for metamodels using multi-objective heuristic search. The
optimization process is driven by the improvement of some quality
attributes selected by the user. To evaluate the effectiveness of our
approach, we conducted a set of experiments using a dataset of
metamodels and relying on participants familiar with metamod-
eling. The results show that our approach succeeds in improving
the quality of an input metamodel and outperforms other proposed
approaches.

As part of future work, we plan to improve our proposed frame-
work to limit the number of proposed solutions by keeping the most
relevant. We intend to explore running a second optimization phase
to reduce the size of solutions space based on the user preferences.

REFERENCES

[1] Marwen Abbes, Foutse Khomh, Yann-Gael Gueheneuc, and Giuliano Antoniol.

2011. An empirical study of the impact of two antipatterns, blob and spaghetti

code, on program comprehension. In 15Th european conf. on software maintenance

and reengineering. 181-190.

Bill Andreopoulos. 2004. Satisficing the Conflicting Software Qualities of Main-

tainability and Performance at the Source Code Level.. In WER. 176-188.

[3] Thorsten Arendt and Gabriele Taentzer. 2012. Integration of smells and refactor-

ings within the eclipse modeling framework. In Proceedings of the Fifth Workshop

on Refactoring Tools. ACM, 8-15.

Thorsten Arendt and Gabriele Taentzer. 2013. A tool environment for qual-

ity assurance based on the Eclipse Modeling Framework. Automated Software

Engineering (2013), 141-184.

[5] Islem Baki and Houari Sahraoui. 2016. Multi-step learning and adaptive search
for learning complex model transformations from examples. ACM Transactions
on Software Engineering and Methodology (2016), 1-37.

[6] Manuel F Bertoa and Antonio Vallecillo. 2010. Quality attributes for software
metamodels. Malaga, Spain (2010).

[7] Lorenzo Bettini, Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio.
2017. Edelta: An Approach for Defining and Applying Reusable Metamodel
Refactorings.. In MODELS. 71-80.

[8] Lorenzo Bettini, Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio.
2019. Quality-Driven Detection and Resolution of Metamodel Smells. IEEE Access
(2019), 16364-16376.

i

=
fuat

—_

9]

[10

[11

[12

=
&

(14

[15

[16

(17]

(18]

[19

[20

[21

[22

(23]

S
=)

[25

[26]

[27

[28

™~
29,

[30

[31

[32

[33

O. Ben Sghaier et al.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-driven software
engineering in practice. Synthesis lectures on software engineering (2017), 1-207.
Petra Broschy, Philip Langer, Martina Seidl, and Manuel Wimmer. 2009. Towards
end-user adaptable model versioning: The by-example operation recorder. In
ICSE Workshop on Comparison and Versioning of Software Models. 55-60.
Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan. 2000. A
fast elitist non-dominated sorting genetic algorithm for multi-objective optimiza-
tion: NSGA-IL In Int. conf. on parallel problem solving from nature. 849-858.
Saumya K Debray, William Evans, Robert Muth, and Bjorn De Sutter. 2000.
Compiler techniques for code compaction. ACM Transactions on Programming
languages and Systems (2000), 378-415.

Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

Adnane Ghannem, Marouane Kessentini, Mohammad Salah Hamdi, and Ghizlane
El Boussaidi. 2018. Model refactoring by example: A multi-objective search based
software engineering approach. Journal of Software: Evolution and Process (2018).
Rohit Gheyi, Tiago Massoni, and Paulo Borba. 2005. A rigorous approach for
proving model refactorings. In 20th IEEE/ACM international Conf. on Automated
software engineering. 372-375.

Aakriti Gupta and Shreta Sharma. 2015. Software Maintenance: Challenges and
Issues. Issues (2015), 23-25.

Neil B Harrison and Paris Avgeriou. 2007. Leveraging architecture patterns to
satisfy quality attributes. In European conf. on software architecture. 263-270.
Ahmad Hassanat, Khalid Almohammadi, Esra’ Alkafaween, Eman Abunawas,
Awni Hammouri, and VB Prasath. 2019. Choosing mutation and crossover ratios
for genetic algorithms—a review with a new dynamic approach. Information 10,
12 (2019), 390.

Marouane Kessentini, Houari Sahraoui, Mounir Boukadoum, and Omar Ben
Omar. 2012. Search-based model transformation by example. Software & Systems
Modeling (2012), 209-226.

Foutse Khomh, Massimiliano Di Penta, Yann-Gaél Guéhéneuc, and Giuliano
Antoniol. 2012. An exploratory study of the impact of antipatterns on class
change-and fault-proneness. Empirical Software Engineering (2012), 243-275.
Jesus J Lopez-Fernandez, Esther Guerra, and Juan De Lara. 2014. Assessing the
Quality of Meta-models.. In MoDeVVa@ MoDELS. 3-12.

Zhiyi Ma, Xiao He, and Chao Liu. 2013. Assessing the quality of metamodels.
Frontiers of Computer Science (2013), 558—570.

R Timothy Marler and Jasbir S Arora. 2004. Survey of multi-objective optimization
methods for engineering. Structural and multidisciplinary optimization (2004),
369-395.

Maddeh Mohamed, Mohamed Romdhani, and Khaled Ghédira. 2009. Classifica-
tion of model refactoring approaches. Journal of Object Technology 8, 6 (2009),
121-126.

Chihab eddine Mokaddem, Houari Sahraoui, and Eugene Syriani. 2018. Recom-
mending model refactoring rules from refactoring examples. In 21th ACM/IEEE
Int. Conf. on Model Driven Engineering Languages and Systems. 257-266.

Haris Mumtaz, Mohammad Alshayeb, Sajjad Mahmood, and Mahmood Niazi.
2019. A survey on UML model smells detection techniques for software refactor-
ing. Journal of Software: Evolution and Process (2019), e2154.

Jan Reimann, Mirko Seifert, and Uwe Aimann. 2010. Role-based generic model
refactoring. In International Conf. on Model Driven Engineering Languages and
Systems. 78-92.

Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. 2008. EMF:
eclipse modeling framework. Pearson Education.

Misha Strittmatter, Georg Hinkel, Michael Langhammer, Reiner Jung, and Robert
Heinrich. 2016. Challenges in the evolution of metamodels: Smells and anti-
patterns of a historically-grown metamodel. (2016).

Yu Sun, Jeff Gray, and Jules White. 2011. MT-Scribe: an end-user approach
to automate software model evolution. In 33rd international conf. on software
engineering. 980-982.

Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. 2014. Refactor-
ing for software design smells: managing technical debt. Morgan Kaufmann.
Aiko Yamashita and Leon Moonen. 2013. Exploring the impact of inter-smell
relations on software maintainability: An empirical study. In 35th International
Conf. on Software Engineering. 682-691.

Jing Zhang, Yuehua Lin, and Jeff Gray. 2005. Generic and domain-specific model
refactoring using a model transformation engine. In Model-driven Software
Development. 199-217.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Evaluation of the metamodel quality
	3.1 Overview
	3.2 Promoting the quality of metamodels
	3.3 Design smell detection and refactoring

	4 Search-based metamodel refactoring
	4.1 Multi-objective optimization
	4.2 Problem formulation
	4.3 Generating new refactoring solutions
	4.4 Evaluating refactoring solutions
	4.5 Metamodel refactoring recommendation

	5 Validation
	5.1 Research questions
	5.2 Experimental setting
	5.3 Results

	6 Threats to validity
	7 Related work
	8 Conclusion
	References

